

I | P a g e

1

I | P a g e

PROGRAMMING FUNDAMENTALS

CHUNG BOON CHUAN

NIK RAHAYA BINTI NIK ISHAK

POLITEKNIK KOTA BHARU

ISBN -9789671663974

II | P a g e

Published and printed by:

Department of Electrical Engineering

Politeknik Kota Bharu

KM. 24, Kok Lanas, 16450 Ketereh, Kelantan.

Programming Fundamentals

First Edition 2021

© 2021 Chung Boon Chuan & Nik Rahaya Binti Nik Ishak

All rights reserved. No part of publication may be reproduced, stored in any form or by

any means, electronic, mechanical, photocopying, recording or otherwise without prior

written permission of the copyright holder.

B.C Chung

Programming Fundamentals/ B.C.Chung

III | P a g e

PREFACE

Apart from our efforts, the success of any book writing project depends largely on the

encouragement and guidelines of many others. We would like to take this opportunity

to express our sincere gratitude to the people who have been instrumental in the

successful completion of this book. Finally Programming Fundamentals book was

successfully published after working hard preparing this book since June 2020. This

book is written and published as a guide or reference to all engineering students in

polytechnic about the fundamental programming. This book will expose students to

the application of C programming. C Programming is a general-purpose programming

language that is extremely popular, simple and flexible. It is machine-independent,

structured programming language which is used extensively in various applications.

I would like to express appreciation to committee member Nik Rahaya Binti Nik Ishak

and linguist Melissa Khor Suan Chin for her effort in completing this book. Hopefully

this book can preferably utilized by all lecturers and students. Thank you.

CHUNG BOON CHUAN

Electrical Engineering Department

Polytechnic Kota Bharu

KM24 Kok Lanas

16450 Ketereh

Kelantan

IV | P a g e

SYNOPSIS

PROGRAMMING FUNDAMENTALS provides the skills necessary for the effective

application of computer programming in engineering. Users will be able to develop

their programming skills through various methods and practical by reviewing sample

programmes. The learning outcome is for the users to acquire proficiency in writing

small to medium programmes based on a procedural programming language.

Programming is an increasingly important skill, whether you aspire to a career in

software development, or in other fields. This book is the first in the specialization

Introduction to Programming in C, but its lessons extend to any language you might

want to learn. This is because programming is fundamentally about figuring out how

to solve a class of problems and writing the algorithm, a clear set of steps to solve any

problem in its class. This course will introduce you to a problem solving process which

can be used to solve any programming problem. In this book, you will learn how to

develop an algorithm, then progress to reading code and understanding how

programming concepts relate to algorithms.

This book contains a description of the basic concepts needed in learning fundamental

programming. Each chapter has an example of a program. Apart from that, this book

also has exercises that allow you to use it yourself with the topics described. This book

contains several chapters namely the contents of the Introductory to Programming,

Fundamentals of C Language, Selection Statements, Looping Statements, Function

and Array.

V | P a g e

About the Authors

Chung Boon Chuan

The author was born in 1972 in Tanah Merah, Kelantan. He received his

primary and secondary education in Tanah Merah before enrolling at Johor

Bharu. Have academic qualification in Electrical Engineering First Degree

(UTM, 97) and Bachelor of Education (UTM, 98). Began his career as a

lecturer Polytechnic Seberang Prai (PSP) in August 1999 and is now being

served at the Polytechnic Kota Bharu (PKB). Actively participate in the

Innovative and Creative Convention (ICC) rankings Polytechnic and

Ministry until his appointment as facilitator and invited as a jury. Experience in the field of

computer software and frequently invited as a speaker courses involving computing. He is a

Master Trainer MQA (Malaysian Qualification Accreditation) for the programs offered at the

Department of Electrical Engineering, Polytechnic Kota Bharu. He is also one of the

curriculum program offered Diploma in Electronic Engineering at the Department of Electrical

Engineering, Polytechnic Malaysia.

Nik Rahaya binti Nik Ishak

The author was born in 1975 in Kota Bharu, Kelantan. She received her

primary and secondary education in Kota Bharu before enrolling at Alor

Setar, Kedah in 1995. She have an academic qualification in Information

Technology First Degree (UUM, 98) and Masters of Education (UTM,

2000). Began her career as a lecturer at Polytechnic Kota Kuala

Terengganu (PKT) in September 2020 and is now being served at the

Polytechnic Kota Bharu (PKB). Actively participate in the Innovative and

Creative Convention (ICC) rankings Polytechnic and Ministry.

Experienced in teaching computing related subjects such as C and Visual Basic programming

at current polytechnic.

VI | P a g e

CONTENTS

CHAPTER TITLE PAGES

1.0 INTRODUCTORY TO PROGRAMMING

CHAPTER

1

1.1 Programming Language 1

1.2 Types Of Programming 3

1.3 Types Of Programming Languages 4

1.4 Algorithm, Flowchart And Pseudocode 4

1.5 Apply algorithm, flowchart, pseudocode and analyse
problem

8

1.6 Tutorials 10

2.0 FUNDAMENTALS OF C LANGUAGE

CHAPTER

2

2.1 Variables, Constants And Data Types 13

2.2 Understand Fundamentals Of C Programme 16

2.3 Apply Fundamentals Of C Programming 24

2.4 Tutorials 28

2.5 Practical Activities 31

3.0 SELECTION

CHAPTER

3

3.1 Remember SELECTION Programmes 34

3.2 Understand SELECTION Programmes 40

3.3 Apply SELECTION Programmes 42

3.4 Tutorials 46

3.5 Practical Activities 48

4.0 LOOPING

CHAPTER

4

4.1 LOOPING Programmes 53

4.2 Understand LOOPING Programmes 60

4.3 Apply LOOPING statements 62

4.4 Tutorials 68

4.5 Practical Activities 71

5.0 FUNCTION

CHAPTER

5

5.1 FUNCTION Programmes 73

5.2 Remember FUNCTION Programmes 73

5.2 Understand FUNCTION Programmes 76

5.3 Apply FUNCTION Programmes 78

5.4 Tutorials 81

5.5 Practical Activities 82

6.0 ARRAYS

CHAPTER

6

6.1 ARRAYS Programmes 85

6.2 Understand ARRAYS Programmes 90

6.3 Apply ARRAYS Programmes 98

6.4 Tutorials 101

6.5 Practical Activities 102

7.0 DEMONSTRATE THE I/O OPERATION 106

REFERENCES 126

1 | Page

INTRODUCTION

The word computer was derived from the word compute, which means to calculate. Computers

were introduced to perform fast and accurate calculations. Today, computers are widely used

in almost all fields. Computers, however, have to be instructed by humans to perform any task.

The instructions are given in the form of programs. In this unit, you will learn the different types

of programming languages and the various programming techniques involved in writing

programs.

1.1 PROGRAMMING LANGUAGE

Computer needs human to provide it with instructions to make it perform tasks. These

instructions must be provided in a language that the computer understands. This language

through which humans communicate with computers is known as programming language.

1.1.1 C programming

C is a computer programming language which can use to create lists of instructions

for a computer to follow. C is a compiled language which means it must run through

a C compiler to turn the program into an executable that the computer can run

(execute). The C program is the human-readable form, while the executable that

comes out of the compiler is the machine-readable and executable form.

1.1.2 Background of C programming

C is a programming language developed at AT&T Bell laboratories by Dennis Ritchie.

This programming language was named C as it followed an earlier programming

 1.0 INTRODUCTORY TO PROGRAMMING

Note

2 | Page

language named B. C is portable, powerful and flexible. Because of these features, C

is used for both system and application level programming. C is reliable, simple and

easy to use. It is easier to learn newer languages once you are familiar with C

language.

1.1.3 Sample of C program

A basic C program has the following form:

1.1.4 Compile programs

Compilation is the process of conversion of high-level language into machine

language. The process of conversion is called compilation. During compilation, the

entire program is compiled and all errors in the program are displayed. Once the

errors are corrected, the program is compiled successfully. The source code gets

converted into object code.

1.1.5 Execute programs

Execution is the process of running the program to get the desired output. Before a

program is executed, it has to be loaded into the memory. A special program called

the loader will take the executable code from the disk and place it in the memory.

This process is called loading.

3 | Page

1.2 TYPES OF PROGRAMMING

1.2.1 Define the following terms

a. Programme: A program is a set of instructions given to the computer to perform any

task.

b. Programmer: The person who writes the program is called a programmer.

c. Programming language: A programming language is a language that is used for writing

 program.

d. Programming: The process of writing these instructions is known as programming

1.2.2 Programming languages

Programming languages are broadly classified into low-Level languages and High-

Level Languages.

a. Low-Level Languages

Low-level languages are programming languages in which programs are written

based on the internal architecture (design) of machines. Low-level languages are

further divided into two types:

i. Machine language

Machine language is the only language that computers can understand and

all the instructions in this language are in the form of 1s and 0s.

ii. Assembly language

Assembly language is a programming language that use symbolic instructions

called mnemonics or names.

b. High-Level Language

High-level languages are programming languages that use English words and

mathematical symbols to represent instructions in programs.

Advantages:

i. Programs written in high-level languages are almost machine- independent.

ii. Programmer need not know about computer hardware to write programs in

high-level languages.

4 | Page

iii. It is easier to learn and write programs in high-level languages than low-level

languages.

1.3 TYPES OF PROGRAMMING LANGUAGES

1.3.1 Structured Programming

Structured programming is a programming methodology in which the instructions are

written in a sequence. The structure of a program refers to the order in which the

statements are executed in the program.

1.3.2 Modular Programming

Modular programming is a programming methodology in which the complex program

is broken into number of simple modules. Complex program is broken down into

segments of code called modules. A module is an independent segment of the

program that performs a specific task.

1.3.3 Object-Oriented Programming

Object-oriented programming is a programming methodology in which the data and

the code are treated as a single unit. In object-oriented programming the data and

the code are treated as a single unit. Object-oriented programming gives more

importance to the data. This programming approach aims to provide solutions for

real-world related problems.

1.4 ALGORITHM, FLOWCHART AND PSEUDOCODE

Various programming tools, such as algorithm, flowchart and pseudocode, are used for

solving problems. These tools are used to represent the instructions and designing the

sequence of instructions in a program.

1.4.1 Algorithm in programming

An Algorithm is the sequence of steps required to provide a solution to a problem.

Notice that the algorithm is a set of instructions written in simple English. Each step

of the algorithm should be simple and it should clearly represent the input, process

and output.

5 | Page

Characteristics of Algorithms

The characteristics of algorithms are:

a. Instructions must be simple.

b. Instructions must be accurate.

c. Instructions should be general statements. It should not be written with
respect to any specific programming language.

d. Instructions should not be repeated infinitely.

e. Algorithm should be stopped after performing the instructions.

1.4.2 Flowchart in programming

Flowchart is an algorithm represented graphically. Flowcharts are used to analyze

problems. Then, it is used to develop the logic to solve problems. The process of

drawing a flowchart is referred to as flowcharting. Instructions in a flowchart are

represented using different symbols. These symbols are called as flowchart symbols.

a. Flowchart Symbols

Table 1.4.2 shows the basic flowchart symbols used for representing the

different types of instructions.

Symbol Name

Terminal

This symbol is used to represent the starting and
ending point in the program logic flow. Every
flowchart should have only one start and one
end terminal symbol

Input/Output

This symbol is used to either accept the input or
to display the output data.

Processing

This symbol is used to represent mathematical
instructions

Decision

This symbol is used when there is a condition.
The test condition is written within this symbol.
Based on this condition, appropriate path is
followed during program execution.

6 | Page

Flow Lines

This symbol is used to represent the flow of the
algorithm. The exact sequence in which the
instructions are executed is represented using
this symbol.

Connectors

This symbol is used to join a flowchart that is
drawn in many pages. A pair of identically
labelled connector symbol is used to indicate a
continued flow of the flowchart

Table 1.4.2: Flowchart Symbols

b. Flowchart Examples

c. Advantages

● A flowchart is easy to understand since it is a graphical representation of the

problem.

● If any errors occur in the program at a later stage, a programmer can easily

identify the reason for the error by looking at the flowchart.

● A flowchart helps the programmer to avoid forgetting any steps while writing a

program.

● It is easier to write programs after drawing the flowchart.

d. Disadvantage

● Drawing a flowchart is a time-consuming process.

● It is very difficult to draw the flowchart for programs that contain complex

branches and loops.

● The amount of details that a flowchart should represent is not standardised.

 Start

End

 Mark1? Mark2?

 Total

Total=mark1+mark2

7 | Page

1.4.3 Pseudocode in programming

Pseudocode is a detailed description of what a computer program or algorithm must

perform. It is an outline of program that can be converted into programming

instruction. Pseudocode use special reserved words for expressing the logic of

programs.

a. Pseudocode keyword

 Table 1.4.3 lists the keywords that are used in a pseudocode.

Keyword Description

// Refers to a comment entry. It is used to give additional
information about the program. It can be used anywhere
inside the pseudocode.

begin

end

Specifies the block of statements that performs a specific task.
The first statement is the begin statement and the last
statement is the end statement. The other instructions are
given between these two statements.

Accept Accepts the input values.

Display Displays the output.

Set Initialises the value of variables.

if --- else Specifies the condition and the block of statements that are
executed based on the condition.

for Specifies the conditions and number of times the block has to
be executed based on the condition.

Table 1.4.3 : Keywords Used in Pseudocode

b. Pseudocode Examples

c. Advantages

● It enables even a non-programmer to understand the working of programs.

● The time taken to write pseudocode is less compared to drawing a

flowchart.

● It is easier to modify the pseudocode compared to modifying flowcharts.

begin

 accept the mark1 and mark2 obtained by the student

 add mark1 and mark2 into the running total

 display total

end

8 | Page

● A pseudocode can easily be converted into a program by replacing the

pseudocode instructions with equivalent program statements.

1.5 Apply Algorithm, flowchart, pseudocode and analyze problem

1.5.1 Construct flowcharts for the given problem

a. To print message Hello World!

b. To calculate area of rectangle

1.5.2 Apply flowchart for the following problems

The unit so far dealt with writing algorithms and pseudocode for simple problems. In

these, all the instructions are executed in the same sequence as they appear in the

algorithm or the pseudocode. However, certain instructions need to be executed only

when a condition is satisfied. This is done by altering the sequence of execution. The

order in which the instructions are executed will depend on the structure of the

program. All simple or complex computer programs are written using one or a

combination of the following basic structures:

a. Sequence structure

b. Selection structure

c. Looping structure

1.5.3 Sequence structure

9 | Page

In a sequence structure, all the instructions in the program must run one after

another. There is no skipping of any instruction; no task is skipped in the sequence.

Here, the instructions are executed one by one, or in sequence.

a. Sequential structure

Figure 1.5.3 shows the flowchart for sequential execution of instructions.

Figure 1.5.3: Flowchart for Sequence Structure

1.5.4 Selection structure

In a selection structure, the instructions are executed based on the answer for a

stated condition. Based on the condition, only one of the two tasks will be executed.

a. Selection structure.

Figure 1.5.4 shows the flowchart for selection structure.

Figure 1.5.4: Flowchart for Selection Structure

1.5.5 Looping structure

Statement 1 is executed first

Statement 2 is executed only
after the execution of Statement

1

Statement 3 follows Statement 2.

Condition?

Statement 1 Statement 2

True False

If the specified condition is true,

then, execute statement 1
else, execute statement 2.

10 | Page

In a looping structure, a set of instructions is executed several times based on

certain conditions.

a. Looping structure

The Figure 1.5.5 shows the flowchart for looping structure.

Figure 1.5.5: Flowchart for Looping Structure

a) List THREE (3) types of programming

b) Define the following terms

c) Draw the flowchart to calculate the average of three numbers

d) Define the programming language and list TWO (2) types of programming languages.

e) Sketch the flowchart by referring the pseudocode below :

Condition

?

Process

True

False

Tutorial

Start

Enter the current price and increase rate

Calculate the increase amount by multiplying the current

price by the increase rate

Calculate the new price by adding the increase amount to the

current price

Display the increase amount and new price

End

11 | Page

f) Write a pseudocode based on flowchart below :

g) Define the high level language in programming.

h) Explain what C programming is and write TWO (2) lines of code to illustrate it.

i) Based on the pseudo code below, draw a flowchart

Start

Enter radius

Calculate area of the circle = pi X radius X radius

Display area

End

12 | Page

INTRODUCTION

Before you start writing programs, it is very important to understand the basic elements that
are used in constructing simple C statements. These are C character set, variables, constants,
data types and keywords as shown in Figure 2.0.

Figure 2.0: C Basic Elements

 2.0 FUNDAMENTALS OF C LANGUAGE

13 | Page

2.1 VARIABLES, CONSTANTS AND DATA TYPES

The type of data for the variables and constants determines the type of information to

be stored in the allocated memory space in C programming.

2.1.1 C Character set

A character or set of characters is used to represent any information. C uses

alphabets, numbers and certain special characters for this purpose. Table 2.1.1

represents the alphabets, numbers and special characters that are valid in C.

Type Character Set

Alphabets A, B, C … X, Y, Z

a, b, c … x, y, z

Digits 0, 1, 2 … 9

Special
characters

+ - * / % = & # < > () : { } _ ; ? “ | ‘ .
, ~ \ ! ^ (blank space)

Table 2.1.1: C Character Set

2.1.2 Data types available in C

Definition: Data type will define the type of the value to be stored in the memory.

Programming languages require the programmer to declare the data type of every

data object used in the program.

C supports several different types of data. The following are the basic data types

available in C:

Note

14 | Page

Integer A whole number, a number that has no fractional part.

Character A single character or a group of characters (string).

Floating-point A number with a decimal point.

Byte a group of binary digits or bits (usually eight) operated on as a unit.

Long A word is a fixed-sized piece of data handled as a unit by the instruction
set or the hardware of the processor.

Double A word is a fixed-sized piece of data handled as a unit by the instruction
set or the hardware of the processor.

String A word is a fixed-sized piece of data handled as a unit by the instruction

set or the hardware of the processor.

Word A word is a fixed-sized piece of data handled as a unit by the instruction
set or the hardware of the processor.

Table 2.1.2: Data types available in C

2.1.3 Keywords in C

Definition: Keywords are reserved words for which the meaning is already defined

to the compiler.

C has special reserved words that cannot be used as identifiers. These are keywords.

There are 32 keywords in C language. They are listed in Table 2.1.3.

Types Keywords

Data types, modifiers and
storage class specifiers

void, int, char, float, double, signed,
unsigned, long, short, auto, const,
extern, static, volatile, register and
typedef

User defined data types
and type related

struct, union, enum and sizeof

Conditional if, else, switch, case and default

Flow control for, while, do, break, continue, goto and
return

Table 2.1.3: Keywords in C Language

2.1.4 Variable name in C

Definition: Variable is the name given to the memory location where the data is

stored. This value keeps changing during the program execution.

15 | Page

Computer stores data in the computer memory in a specific location. To use the

data, you must know the address of the memory location, where the data is stored.

The name given to this memory location is called a variable. The data of a variable

changes during the execution of the program.

Rules for Naming Identifiers

The naming convention of the identifiers follows the following rules:

1. Can be a combination of alphabets and numbers but must start with an

alphabet.

2. Comprise maximum of 40 characters.

3. No commas or blank space is allowed.

4. No special characters can be used except underscore (_).

2.1.5 Defining versus declaring variables

Definition of variable mean asking compiler to allocate memory to variable or define

storage for that variable. Can define a variable only one time.

Declaration of variable mean to tell compiler that is a variable\function of particular

data type.

Any variable used in a program must be declared in the beginning. This is to specify

the variable data type to the compiler. Table 2.1.5 lists some of the declarations

used in C language.

Keywords Used for
Data type

Description

int Integer number: A whole number without fractional
part.

float Floating-point number (with fractional part).

Char Character: A single character or string.

Table 2.1.5: Keywords for Declaration of Variables

16 | Page

a. Variable declaration : Example 1

 char student_name;

Data type is character student_name is a variable

▪ student_name is a variable, which can take character value.

▪ When you write char name, it is called variable declaration. Variable

declaration means specifying the type of the variable.

b. Variable declaration : Example 2

int mark;
Data type is integer. mark is a

variable..
▪ age is a variable, which can take integer value.

c. Variable declaration :Example 3

float mark2;
Data type is float. Mark2 is a variable.

.
▪ mark is a variable, which can take integer value.

2.2 FUNDAMENTALS OF C PROGRAMME

Fundamentals of C program focused on the basic elements used to construct a simple C

program such as the C character set, identifiers and keywords, data types, constants,

arrays, declarations , expressions and statements.

2.2.1 Explain structure of C programs

Languages like English have words, symbols and grammar rules. Similarly,
programming languages too have words, symbols and rules. In a programming
language, the rules are known as the syntax. If these rules are not followed, a
program will not work. Each programming language has its own set of syntax and
structures to be followed. A typical C program will appear as shown in Table 2.2.1.

Table 2.2.1: Structure of a C Program

 Structure Sample Program

< Comment entry > /* First C program */

< Preprocessor directives > include <stdio.h>

main() main()

{ {

 < Declarations >; int a;

 < C statements >; printf("Welcome to C ");

} }

17 | Page

2.2.2 Structure of a function in the main function

main() is the function where the program is written. Any C program will have one

or more functions and the most important function, which must be present in all

the programs, is the main() function. A program can have only one main() function.

2.2.3 C Preprocessor

#include <stdio.h> is a preprocessor directive statement. This statement directs the

preprocessor to include the standard input and output header file.

The symbol hash (#) will invoke the preprocessor directives. Preprocessor directives

are the instructions given to the compiler. The keyword include will direct the

preprocessor to include the specified header file into the program. A header file

contains definition for all the functions that could be shared by several other

programs.

Syntax

#include <filename>
Example

#include <stdio.h>

2.2.4 Valid identifiers

When you name a variable, choose a relevant identifier. For example, name the

variable to accept the mark of students as mark, age as age, and so on. Table 2.2.4

gives a list of valid and invalid identifiers.

Identifiers Valid/Invalid Reason

Grade Valid Identifier should start with an alphabet.

2 Invalid Identifier starts with a number, which is not allowed.

item1 Valid Identifier can have combination of alphabets and numbers.

1name Invalid Identifier starts with a number.

Amount 1 Invalid No blank space is allowed within an identifier.

code_1 Valid Special symbol underscore (_) can be used in identifier.

area* Invalid Special character asterix (*) cannot be used in identifier.

Table 2.2.4: List of Examples for Valid Identifiers

18 | Page

2.2.5 Differentiate constants and variables in C

Difference between variables and constants.

Variables Constants

Variable is the name given to the
memory location where the data is
stored. This value keeps changing
during the program execution.

Constant is a location in the memory that
stores data that never changes during the
execution of the program.

Example:

 a, grade and mark

Example:

 10, 'A' and 78.90

Table 2.2.5: Difference Between Variables And Constants

2.2.6 Explain input/output statement

An input/output statement or IO statement is a portion of a program that

instructs a computer how to read and process information. It pertains to gather

information from an input device, or sending information to an output device.

a. Input Statement

Definition: Input statements are used for accepting data from the user.

Input statements are used to make the program more interactive.

scanf()

scanf()

Definition: scanf()is a function, used as a statement, to get the value from
the user.

Example

scanf(" %d", &age);

 Format specifier

Identifier

The scanf()function has two parameters: the format specifier and the variable.

These parameters have to be separated by the delimiter comma (,). In the example,

scanf statement will request the user to enter the age. The variable age is of an

integer data type.

19 | Page

The symbol ampersand (&) refers to the address of a variable in the memory. The

input data has to be stored in the memory addressed by that variable.

Syntax

scanf(“<format specifier>", & <variable>);

 Format specifier Identifier

Format Specifiers

Definition: Format specifier defines the data type of the variable to the compiler.

To accept a value, you must specify the type of data expected. Consider the example

given for scanf(). As the variable age is integer type, the format specifier, %d, is used.

It indicates that the variable age is of integer type.

Some of the commonly used format specifiers are listed in Table 2.2.6.

Format Specifier Data Type

%d Int

%f Float

%c Char

Table 2.2.6a: Format Specifiers

b. Output Statement

Definition: Output statements are used for displaying the processed data on

the screen.

printf()

Definition: printf()is a function, used as a statement, to display the data on the

screen.

Example 1

printf("Welcome");

 Output

 Welcome

Welcome

In example 1, the string Welcome will be displayed on the screen.

20 | Page

Example 2

printf(" My age is %d", age);

 String to be displayed on
the screen

Format
specifier.

Variable whose value will be
displayed.

Output

 My age is 16

In example 2, age is a variable of integer data type. Assume that the user enters the

value 21 for the variable age. To display the value of a variable on the screen, the

relevant format specifier must be specified within double quotes.

Syntax

printf("<string> <format specifier>",<variable>);

Definition: Escape sequences are nonprinting characters that are used for

formatting the output.

C provides various escape sequences to display the outputs on screen in the

specified formats. For example, the escape sequence \n will display the text in a

new line and \t will include horizontal tab spacing. Some commonly used escape

sequences are listed in Table 2.2.6b.

Escape Sequence Description

\n Newline

\t Horizontal tab

\’ Apostrophe (‘)

\” Quotation (“)

% Percentage (%)

 Table 2.2.6b: Escape Sequence

2.2.7 Types of Operators

In some of the programs, you might need to perform some mathematical

calculations. Various operations such as adding two numbers, comparing two

numbers and so on need to be performed. Various operators and expressions are

used for this purpose.

21 | Page

Definition: An operator is a symbol that instructs C to perform some operation, or

action.

In a program, for adding two numbers you need to use the addition (+) operator.

Similarly, for comparing two numbers you need to use a comparison operator. It is

therefore necessary to use the appropriate operators to perform these calculations.

For example, + is an operator that represents addition.

Example

c = a + b

In this code line, + is an operator and a, b and c are called operands. Operands are

the variables/constants on which the operators operate.

In C, all operands are expressions. C operators can be classified as:

a. Assignment operators

Definition: Assignment operator (=) is used to assign a value to a variable.

Example1

a = 10; Value 10 is assigned to the variable a.

In example1, the value 10 is assigned to a.

In a C statement, the right side of the operator can be any expression, and the left

side must be a variable name. Thus, the form is as follows:

Variable = expression;

When executed, expression is evaluated, and the resulting value is assigned to

variable.

Example2

 x = y + z;

In example2, the sum of y and z is calculated and the result is stored in x.

22 | Page

b. Mathematical Operators

Definition: Mathematical operators are used for performing simple

mathematical calculations such as addition, subtraction, multiplication and

division.

The various Mathematical operators available in C are listed in Table 2.2.7a.

Operato
r

Operation Description
Example

+ Addition Adds two operands. z=x+y

- Subtraction Subtracts an operand from another. z=a-b

* Multiplicatio
n

Multiplies an operand with the other. z=a*b

/ Division Divides an operand by another. z=a/b

% Modulo Calculates the remainder when an
operand is divided by another.

z=a%b

Table 2.2.7a: Mathematical Operators

You must know how to convert a general mathematical notation to equivalent C

statement. Table 2.2.7b lists some of the examples of C expressions as shown:

Mathematical Notation C Expression

5xy 5*x * y

a+b

a-b

(a+b)/(a-b)

(pq)-(rt) (p*q)-(r*t)

Table 2.2.7b: Mathematical Notations and Their Equivalent in C

c. Relational Operators

Definition: Relational operators are used to compare two operands.

The output of the expression will be a Boolean value, which is either 0 (false) or 1

(true). The various relational operators are listed in Table 2.2.7c.

23 | Page

Symbol Description Example

 > Greater than a>b

 < Lesser than a= Greater than or equal to a>=b

 <= Less than or equal to a<=b

 != Not equal to a!=b

 == Equal to a==b

Table 2.2.7c: Relational Operators

d. Logical Operators

Definition: Logical operators are used to combine two simple statements into a

compound statement.

Using logical operators, you can simulate Boolean algebra in C. The various logical

operators are listed in Table 2.2.7d.

Symbol Operation Description

&& AND The AND (&&) operator will evaluate to true

only if all the conditions in the expression

returns a true value.

|| OR The OR (||) operator will evaluate to true even

if one of the conditions is true.

! NOT The NOT (!) operator will evaluate to true if the

condition fails and vice versa.

Table 2.2.7d: Logical Operators

e. Unary Operators

Definition: A unary operator which operates on one value or operand.

Minus sign (-) is used for substraction as a binary operator and for negotiation as an

unary operator.

result = -x * y;

Result will contain a negative value of 40 which is -40.

Symbol Description Example

+ Positive a = +3

- Negative b = -4

Table 2.2.7e: Unary Operators

24 | Page

f. Increment Operators
Definition: Increment operators are used to increase the value of the variable by

one in C programs.

Syntax

++var_name; (or) var_name++;

g. Decrement Operators
Definition: Decrement operators are used to decrease the value of the variable by

one in C programs.

Syntax

--var_name;

 (or)

var_name--;

2.3 Apply fundamentals of C programming

2.3.1 Construct a simple C program

Step 1: Open C editor and types :

1. #include <stdio.h>
2. main()
3. {
4. printf(" WELCOME ")
5. }

Step 2: Save the program.

2.3.2 Compile and execute programs

Step 3: Compile the program.

Step 3: Run the program and observe the output.

2.3.3 Use input statements in C Program

Step 1: Open C editor and types:

1. #include <stdio.h>
2. main()
3. {
4. int age;
5. scanf("%d",&age);
6. return 0;
7. }

25 | Page

Step 2: Save the program.

Step 3: Compile the program.

Step 3: Run the program and observe the output.

Step 3: output.

Enter the age : 18

 Age : 18

2.3.4 Apply output statements in simple C program

Step 1: Open C editor and types:

1. #include <stdio.h>
2. main()
3. {
4. int age;
5. char grade;
6. float mark;
7. printf("\n Enter the age : ");
8. scanf("%d",&age);
9. printf("\n Enter the grade : ");
10. scanf("%c",&age);
11. printf("\n Enter the mark : ");
12. scanf("%f",&mark);
13. return 0;
14. }

Step 2: Save the program.

Step 3: Compile the program.

Step 3: Run the program and observe the output.

2.3.5 Display the output in the specified format

Step 1: Open C editor and types:

1. #include <stdio.h>
2. main()
3. {
4. int age;
5. char grade;
6. float mark;
7. printf("\n Enter the age : ");
8. scanf("%d",&age);
9. printf("\n Enter the grade : ");

26 | Page

10. scanf("%c",&age);
11. printf("\n Enter the mark : ");
12. scanf("%f",&mark);
13. printf("\n The age :%d ",age);
14. printf("\n The grade :%c ",grade);
15. printf("\n The mark :%f ",mark);
16. return 0;
17. }

Step 2: Save the program.

Step 3: Compile the program.

Step 3: Run the program and observe the output.

2.3.6 Apply calculations by using operators and expressions

Find the answer, answer if m=5, n=15, p=12

a) answer = n % m + p – p / m

 = 15 % 5 + 12 -12 / 5
 = 0 + 12 -12 /5
 = 0 + 12 – 2
 =10

b) answer = (m + n) % n – p

 = (5+15) % 15 - 12
 = 20 % 15 -12
 = 5 -12
 = -7

c) answer = n / m + n % p * m

 = 15/5 + 15 % 12 * 5
 = 3 + 15 % 12 *5
 = 3 +3*5
 = 3 + 15
 = 18

2.3.7 Implement mathematical calculations in simple C program

Step 1: Open C editor and types:

1. #include <stdio.h>
2. main()
3. {
4. int mark1, mark2;
5. float total;
6. printf("\n Enter the mark1 : ");
7. scanf("%d",&mark1);
8. printf("\n Enter the mark2 : ");
9. scanf("%d",&mark2);

27 | Page

10. total=mark1+mark2;
11. printf("\n %d + %d = %.2f",mark1,mark2,total);
12. return 0;
13. }

Step 2: Save the program.

Step 3: Compile the program.

Step 3: Run the program and observe the output.

2.3.8 Implement mathematical calculations using the function in the main function

Step 1: Open C editor and types:

1. #include <stdio.h>
2. int addition(int var1, int var2)
3. {
4. int sum;
5. sum = var1+var2;
6. return sum;
7. }
8. int main()
9. {
10. int num1, num2;
11. printf("Enter number 1: ");
12. scanf("%d",&num1);
13. printf("Enter number 2: ");
14. scanf("%d",&num2);
15. int total = addition(num1, num2);
16. printf ("Output: %d", total);
17. return 0;
18. }

Step 2: Save the program.

Step 3: Compile the program.

Step 3: Run the program and observe the output.

28 | Page

a) List THREE (3) types of operator used in C programming

b) Recognize the listed keyword in the table B1 as reserved word OR not reserves word C

Programming, then complete below:

Keyword Invalid reserved
word

valid reserved word

int /

name /

if /

structured /

looping /

c) Observe every line and list the errors found on the following program below:

/?Compute volume of a Cone program?

#<include>stdio.h
#default PI 3.142
main()
{
double rad, Volume, height;

printf("~~~~~~~CONE VOLUME CALCULATOR~~~~~~~~~~~~~~~");
printf("Enter a radius value of cone");
scanf("%f", &radius);
printf("Enter a height value of cone");
scanf("%f", %height);

 Volume = (height)* pi * radius ^2;

printf(" The volume of cone is %d", Volume);
 }
Return $;
}

d) Identify the data types for the following variables:

i. a = - 8.2

ii. b = 360

iii. c = ‘?’

Tutorial

29 | Page

e) Rewrite the following manes to be valid identifier

i. 4th value

ii. Order-no

iii. Error flag

iv. Break

v. @google.com

f) Solve the pseudo code below by writing C Language.

g) List THREE (3) data types used in C Programming.

h) Identify the suitable variable declaration for each variable in table below based on the

correct format in C programming.

Variable Variable Declaration

Alphabet = ‘A’

Num = 2

Price of book

Number of student

Average of three number

i) Complete the program below:

#________________<stdio.h>
int main()

char name[20];
int staff_no;
printf(“Enter your name:”);
scanf(“%s”, _______);
printf(“Enter your staff number:”);
____ (“____”, &staff_no);
printf(“Mr/Ms %c, your staff number is _______”, name, staff_no);
_____________;
}

Start
Read user height as float
Read user weight as float
Calculate BMI = weight (kg)
 height2(m2)
Display BMI
End

30 | Page

j) Describe the function of each basic symbols in the table below that commonly used in

flowchart:

Symbol Function

i.

ii.

iii.

iv.

v.

k) Based on program below, identify FIVE (5) errors.

l) Pak Ali, a durian seller’s wants to use a computer in his selling. He is using the scale in

pounds, but the selling is done in kg.

Use a C language to write a program to help him change each weight of durian from

pound to kg.

(1kg = 2.205 pound @ 1 pound = 0.404kg)

#include<stdo.h>

main();

{

int x,y;

x = 10;

 y = x++;

 printf("%f", x);

 printf("%d", &y);

}

31 | Page

Program 1

#include<stdio.h>
main()
{
char name[20];
int staff_no;
printf("Enter your name:");
scanf("%s",&name);
printf("Enter your Staff No:");
scanf("%d",&staff_no);
printf("Mr/Ms %s, your Staff No is %d",name,staff_no);
return 0;
}

Program 2

#include<stdio.h>

main()
{
int num1, num2;
float num3,num4,num5;
char cha, name[20];
printf("Input from user\n");
printf("Enter a Character\n");
scanf("%c",&cha);
printf("Enter a your name\n");
scanf("%s",&name);
printf("Enter 2 integer numbers number\n");
scanf("%d %d",&num1,&num2);
printf("\nEnter 3 floating point number\n");
scanf("%f %f %f",&num3,&num4,&num5);
printf("\n Output to user");
printf("\nThe two numbers You have entered are %d and %d", num1, num2);
printf("\nThe float or fraction that you have entered is %.1f, %.2f and %.3f.",
num3,num4,num5);
printf("\nThe character that you have entered is %c", cha);
printf("\nThe character that you have entered is %s", name);

return 0;
}

Practical Activities

32 | Page

Program 3

#include <stdio.h>
main()
{
 int A,B,C,jumlah1,jumlah2,jumlah3;
 float purata;
 printf("input statement\n");
 printf ("sila masukan nilai A=");
 scanf("%d",&A);
 printf ("sila masukan nilai B=");
 scanf("%d",&B);
 printf ("sila masukan nilai C=");
 scanf("%d",&C);
 printf("\noutput statement");
 jumlah1=A+B+C;
 printf("\n jumlah %d + %d +%d = %d ",A,B,C,jumlah1);
 jumlah2=A-B-C;
 printf("\n jumlah %d - %d -%d = %d ",A,B,C,jumlah2);
 jumlah3=A*B*C;
 printf("\n jumlah %d X %d X %d = %d ",A,B,C,jumlah3);
 purata=(A+B+C)/3;
 printf("\n purata (%d + %d + %d)/3 = %d ",A,B,C,purata);
 return 0;
}

Program 4

 #include <stdio.h>
 int main()
 {
 double firstNumber, secondNumber, product1,product2;
 printf("Enter two numbers: ");
 scanf("%lf %lf", &firstNumber, &secondNumber);
 product1 = firstNumber * secondNumber;
 printf(" \n Product = %.2lf", product1);

 product2 = firstNumber / secondNumber;
 printf("\n Product = %.2lf", product2);
 return 0;
 }

Program 5

#include <stdio.h>
int main()
{
 float r1,r2,r3,rt;

33 | Page

 printf("Enter the value of resistor 1:");
 scanf("%f",&r1);
 printf("Enter the value of resistor 2:");
 scanf("%f",&r2);
 printf("Enter the value of resistor 3:");
 scanf("%f",&r3);
 rt=r1+r2+r3;
 printf("Total resistance in series:%.2f\n",rt);
 return 0;
}

Program 6

#include <stdio.h>
int main()
{
 float v,i,r;
 printf("Enter the value of current flow through the circuit:");
 scanf("%f",&i);
 printf("Enter the value of total resistance in the circuit:");
 scanf("%f",&r);
 v=i*r;
 printf("The voltage value of the circuit:%.2f\n",v);
 return 0;
}

Program 7

#include<stdio.h>
#include<math.h>
main()
{

 int p,t;
 float r,Simple_Interest,amount,Compound_Interest;
 printf("Please enter principal,time and rate of interest\n");
 scanf("%d%d%f",&p,&t,&r);
 Simple_Interest=p*t*r/100;
 printf("\nSimple interest = %.2f",Simple_Interest);
 amount=p*pow((1 +r/100),t);
 Compound_Interest=amount-p;
 printf("\nCompound interest = %.3f",Compound_Interest);

return 0;
}

34 | Page

INTRODUCTION

Selection statements to make programs more user-interactive and flexible is to make the
program able to handle more than one case. By using of selection statements allow a
program to test several conditions, and execute instructions based on which condition is
true. That is why selection statements are also referred to as conditional statements.

3.1 Remember selection statements

When it comes to computer programs, there is always a trade-off between the program's

flexibility and the ease of using the program. Generally, the simpler a program is, the less

flexible (and less powerful) the program will be. Programs that are very easy to use are

usually not very flexible and often only work for a narrow range of problems. Having

selection statements in a program make the program more flexible.

3.1.1 Define control statements

Selection statements are used to evaluate expression and direct the execution of

the program, depending on the result of the evaluation.

3.1.2 List types of control statements

The selection statements available in C are:

a. if

b. if-else

c. nested if else

d. switch

3.1.3 Define IF, IF-ELSE, NESTED IF ELSE and SWITCH statements

a. Simple if statement is used to execute a set of statements when the condition is

satisfied.

 3.0 Selection Statements

Note

35 | Page

b. The if-else statement is used to execute set of statements based on the

condition.

c. The nested if else statement is present inside the body of another “if” or “else”

statement.

d. The switch statement is used when you choose from a number of choices.

3.1.4 Describe selection statements

A selection statement selects among a set of statements depending on the value of

a controlling expression. The selection statements are the if statement and

the switch statement, which are discussed in the following sections.

3.1.5 Describe structure of simple IF, IF-ELSE, Nested IF-ELSE and SWITCH statements

a. Structure of simple if:

Figure 3.1.5a: Flowchart for if Statement

First, the if statement will evaluate the condition. If the condition evaluates to true,

the conditional statements are executed. If the condition evaluates to false, the

conditional statements are not executed. The execution of conditional statement

depends on the result of the condition.

The syntax for the if statement is:

36 | Page

 if (<Conditional expression>)

 {

 <Conditional statements>;

 }

As shown in the syntax, the keyword if is followed by a conditional expression. The

condition is enclosed within a pair of brackets (). A condition is an expression that

will evaluate to a Boolean value. There are two Boolean values, True(1) or False(0).

The if statement is followed by a pair of curly brackets { } within which the

conditional statements are written.

b. structure of if-else:

Figure 3.1.5b: Flowchart for if-else Statement

The if-else statement will first check the condition. When the condition is fulfilled,

conditional statements1 will be executed. When the condition not fulfilled,

conditional statements2 will be executed.

The syntax for the if-else statement is:

 Body

37 | Page

 if (<Conditional expression>)

 {

 <Conditional statements1>;

 }

else

{

 <Conditional statements2>;

 }

Observe the difference in syntax between a simple if statement and if-else

statement. In the simple if statement, set of statements are executed when the

condition is fulfilled. In if-else statement, a set of statements, which follows if is

executed when the condition is fulfilled, and a set of statements which follows else

is executed when the condition is not fulfilled.

c. structure of nested if-else:

Figure 3.1.5.c: Flowchart for nested if-else Statement

The nested if-else statement will first check the condition 1. When the condition is

fulfilled, the nested statement will check again the condition 2. When the condition

2 is fulfilled conditional statements1 will be executed. If not statement 2 will be

executed. If condition 1 not fulfilled conditional statements 3 will be executed.

True-

False -

Condition
Fulfilled

Condition Not
Fulfilled

else

else

38 | Page

The syntax for the if-else statement is:

 if (<Conditional expression 1>)

 {

 if (<Conditional expression 2>)

 <Conditional statements1>;

else

<Conditional statements2>;

 }

else

{

 <Conditional statements3>;

 }

d. structure of switch:

Figure 3.1.5.d : Flowchart for switch Statement

True-

False -

Condition
1 Fulfilled

Condition Not
Fulfilled

False -
Condition Not
Fulfilled

True-
Condition 2
Fulfilled

39 | Page

The syntax for switch statement is:

switch (<expression>)

{

case <condition 1>:

 <Statements 1>;

 break;

 case <condition 2>:

 <Statements 2>;

 break;

 ...

 case <condition n>:

 <Statements n>;

 break;

 default:

 <default Statements >;

}

The expression following the keyword switch can either be an integer expression or

a character expression. An integer or a character constant follows the keyword case.

Based on the value returned by the expression, the respective case is executed. The

expression is first evaluated and this value is then matched against the constants in

each case. When a match is found, the statements following that particular case

statement are executed. If no match is found, the statements following the default

case are executed.

The keyword break must be included in each case. A break statement will enable

you to skip all the cases following the current case and transfer the control outside

the switch statement.

40 | Page

3.2 Understand and apply selection statements

3.2.1 Differentiate programs simple IF, IF-ELSE, Nested IF-ELSE and SWITCH statements

a. Program IF

#include <stdio.h>
void main()
{
 int day;
 printf("Number of days in December : ");

 scanf("%d",&day); // Accepts the input from the user and stores it in the variable days.

 if (day == 31) // This expression will check whether the value of days is equal to 31.

 {
 printf(" You are correct. "); // This statement will be executed when days is equal to 31.

 }
 printf(" \n You are out of if branch. ");
}

b. Program IF-ELSE

SAMPLE if-else statement. This program accepts two integers from the user and

finds the greater of the two.

/* Program to find the greater of the two numbers */
#include <stdio.h>
void main()
{
 int x,y;
 printf("Enter X and Y values : ");
 scanf("%d %d",&x,&y);
 if (x > y) // This expression will check whether the value of x is greater than the value of y.

 printf(" X is greater than Y"); // This statement will be executed when x is greater than y.

 else
 printf(" Y is greater than X"); // This statement will be executed when x is lesser than y.

}

c. Program nested IF-ELSE

SAMPLE nested if-else statement. This program accepts two integers from the user

and finds the greater of the two.

41 | Page

#include <stdio.h>
main()
{
 int x,y;
printf("Enter X and Y values : ");
scanf("%d %d",&x,&y);
if (x > y) // This expression will check whether the value of x is greater than the value of y.

{
printf(" X is greater than Y"); // This statement will be executed when x is greater than y.
}
else // If x not greater than the value of y.
{

if (x==y) // This expression will check whether the value of x is equal to value of y.

{
printf(" Y is equal to X"); // This statement will be executed when x is equal to y.
}
else
{
printf(" Y is greater than X"); // This statement will be executed when y is greater than x.

}
}
}

d. Program Switch

#include <stdio.h>
void main()
{
 int x;
 printf("\n Enter the value for X (1,2 or 3) : ");
 scanf("%d",&x);
 switch (x) // The value of x will be checked against each case and the corresponding statements will

 be executed.
 {
 case 1: // This case is executed when the value of x is 1.
 printf(" You have entered One ");
 break;
 case 2: // This case is executed when the value of x is 2.
 printf(" You have entered Two ");
 break;
 case 3: // This case is executed when the value of x is 2
 printf(" You have entered Three ");
 break;
 default: // This case is executed when the value of x is not equal to 1, 2 or 3.
 printf(" Wrong Entry ");
 }
}

42 | Page

3.3 Apply selection statements

3.3.1 Construct programs simple IF, IF-ELSE, Nested IF-ELSE and SWITCH statements

a. Sample program IF

To calculate series circuits.

Series

illustrate the working of IF statements to calculate the total resistance for series
circuit and get the output

Program:

#include <stdio.h>
 main()
{
int selection;
float series, parallel;
float R1=100,R2=300, R3=500;
printf("1: Series Circuit\n");
printf("Please Select your choice \n ");
scanf("%d", &selection);
if (selection==1)
{
 series = R1+R2+R3;
 printf(" Total resistance = %.2f Ohm\n",series);
}
return 0;
}

b. Sample program IF-ELSE

To calculate series and parallel circuits.

 Series Parallel

43 | Page

Illustrate the working of IF-ELSE statements to calculate the total resistance for

series and parallel circuit and get the output.

#include <stdio.h>
 main()
{
int selection;
float series, parallel;
float R1=100,R2=300, R3=500;
printf("1: Series Circuit\n");
printf("2. Parallel Circuit \n");
printf("Please Select your choice \n ");
scanf("%d", &selection);
if (selection==1)
{
 series = R1+R2+R3;
 printf(" Total resistance = %.2f Ohm\n",series);
}
else if (selection==2)
{
 parallel = 1/(1/R1 +1/R2+1/R3) ;
 printf(" Total resistance = %.6f Ohm\n",parallel);
 }
else
{
 printf(" wrong choice \n ");
 }
return 0;
}

c. Sample program Nested IF-ELSE

To calculate series and parallel circuits.

 Series Parallel

Illustrate the working of Nested IF-ELSE statements to calculate the total resistance

for series and parallel circuit and get the output.

44 | Page

#include <stdio.h>
 main()
{
int selection1,selection2;
float series, parallel;
float R1=100,R2=300, R3=500;
printf("1:You want to do the calculation\n");
scanf("%d", &selection1);
if (selection1==1)
{
 printf("1: Series Circuit\n");
 printf("2. Parallel Circuit \n");
 printf("Please Select your choice \n ");
 scanf("%d", &selection2);
 if (selection2==1)
 {
 series = R1+R2+R3;
 printf(" Total resistance = %.2f Ohm\n",series);
 }
 else
 {
 parallel = 1/(1/R1 +1/R2+1/R3) ;
 printf(" Total resistance = %.6f Ohm\n",parallel);
 }
}
else
{
 printf(" wrong choice \n ");
 }
return 0;
}

d. Sample program SWITCH statements

 RT = R1 + R2 + R3
 Series Parallel
Illustrate the working of SWITCH statements to calculate the total resistance for

series and parallel circuit and get the output.

45 | Page

#include <stdio.h>
 main()
{
int selection;
float series, parallel,C1,C2,C3;
printf("**");
printf("\nEnter the value of C1= ");
scanf("%f",&C1);
printf("\nEnter the value of C2= ");
scanf("%f",&C2);
printf("\nEnter the value of C2= ");
scanf("%f",&C3);
printf("**");
printf("\n1: Series Circuit");
printf("\n2. Parallel Circuit ");
printf("\nPlease Select your choice ");
printf("**");
scanf("%d",&selection);
switch(selection)
{
case 1:
 series = 1/(1/C1 +1/C2+1/C3) ;
 printf(" Total series capacitance = %.6f Farad\n",series);
 break;
case 2:
 parallel = C1+C2+C3;
 printf(" Total parallel capacitance = %.2f Farad\n",parallel);
 break;
default:
 printf(" wrong choice \n ");
}
return 0;
}

46 | Page

a) Explain switch statements

b) Write a program that request two integer number as input from user to test both input

is non zero or not. Use if-else statement and AND logical operators.

c) Draw flowchart for if-else statement and switch-case statement.

d) Carry out a program that ask user to enter the total of 100 marks and then display the

letter grade and wish based on diagram below:

Mark Grade Wish

85 and above A Excellent

75 - 84 B Best

65 - 74 C Good

55 - 64 D Satisfactory

45 - 54 E Bad

Below 44 F Fail

e) List THREE (3) types of selection statements

f) Discuss TWO(2) differences between if-else statement and switch statement.

g) By referring the flowchart, write a C program to calculate a simple net salary system.

h) Produce C language to display the examination result status and grade point when a

mark is entered by user using if statement. The grading classification is shown in the

table below:

Tutorial

47 | Page

Mark Grade Status

75-100 A PASS

60-74 B PASS

47-59 C PASS

40-46 D FAIL

20-39 E FAIL

0-19 F FAIL

i) Draw a flowchart to represent nested if-else statement.

j) Explain the meaning of the statement statement below :

i. if

ii. if-else

iii. nested if-else

iv. Switch

v. Break

k) Use a C language to write a program for the following statement :

l) Use C language to write a program that accept values of 2 numbers from the user,

compare their size and display the result on the screen. The output as follows:

Option 1 Option 2

Enter value for first number : 4
Enter value for secondnumber : 3

First number is larger number than
second number

Enter value for first number : 6
Enter value for secondnumber : 8

Second number is larger number than
first number

m) Use C language to write a program to calculate the total income of salesperson if the

commission is given based on the table below:

Total Sale Commission

<RM500 5%

RM500 – RM999 7%

RM1000 – RM1499 9%

>=RM1500 12%

Request an input price for one item. Next, quantity of such item should also be entered.

Calculate the total price of the items using the formula : (price * quantity = total). If the

to tal price exceeds RM100, the rebate of 15% will be offered, but no deduction is

granted if otherwise.

48 | Page

n) Rewrite switch statement below using if-else-if statement.

o) Use a C language to write a program for the statement below :

Program 1:

#include<stdio.h>
main()
{
 int number;
 printf("Please enter a number:\n");
 scanf("%d",&number);
 if(number < 500)
 printf("Number is less than 500!\n");
 return 0;
}

Program 2:

#include<stdio.h>
main()
{
 int number;
 printf("Please enter a number:\n");
 scanf("%d",&number);
 if(number < 500)

switch (color) {

 case ‘R’ : printf(\nRed”);break;

case ‘R’ : printf(“\nRed”);break;

case ‘R’ : printf(“\nRed”);break;

default : printf(“Wrong colou code”);

}

An input numbere is required from the user to test

either the number is multiple of three or not using if-

else statement.

Practical Activities

49 | Page

 printf("Number is less than 500!\n");
 else
 printf("Number is greater than 500!\n");
 return 0;
}

Program 3:

#include<stdio.h>
main()
{
 int number;
 printf("Please enter a number:\n");
 scanf("%d",&number);
 if(number < 500)
 printf("Number is less than 500!\n");
 else if(number == 500)
 printf("Number is 500!\n");
 else
 printf("Number is greater than 500!\n");
 return 0;
}

Program 4:

#include <stdio.h>
 main()
{
int selection;
float series, parallel,R1,R2,R3;
printf("**");
printf("\nEnter the value of R1= ");
scanf("%f",&R1);
printf("\nEnter the value of R1= ");
scanf("%f",&R2);
printf("\nEnter the value of R1= ");
scanf("%f",&R3);
printf("**\n");
printf("1: Series Circuit\n");
printf("2. Parallel Circuit \n");
printf("Please Select your choice \n ");
scanf("%d", &selection);
if (selection==1)
{
 series = R1+R2+R3;
 printf("series = R1+R2+R3;");
 printf("\n Total resistance = %.2f Ohm\n",series);
}
else if (selection==2)

50 | Page

{
 parallel = 1/(1/R1 +1/R2+1/R3) ;
 printf("parallel = 1/(1/R1 +1/R2+1/R3) ;");
 printf(" \nTotal resistance = %.6f Ohm\n",parallel);
 }
else
{
 printf(" wrong choice \n ");
 }
return 0;
}

Program 5:

#include <stdio.h>
 main()
{
int selection;
float series, parallel,R1,R2,R3;
printf("**");
printf("\nEnter the value of R1= ");
scanf("%f",&R1);
printf("\nEnter the value of R1= ");
scanf("%f",&R2);
printf("\nEnter the value of R1= ");
scanf("%f",&R3);
printf("**");
printf("\n1: Series Circuit");
printf("\n2. Parallel Circuit ");
printf("\nPlease Select your choice ");
printf("\n**\n");
scanf("%d",&selection);
switch(selection)
{
case 1:
 series = R1+R2+R3;
 printf("series = R1+R2+R3;");
 printf("\nTotal resistance = %.2f Ohm\n",series);
 break;
case 2:
 parallel = 1/(1/R1 +1/R2+1/R3) ;
 printf("parallel = 1/(1/R1 +1/R2+1/R3) ;");
 printf("\nTotal resistance = %.6f Ohm\n",parallel);
 break;
default:
 printf(" wrong choice \n ");
}
return 0;
}

51 | Page

Program 6:

#include <stdio.h>
 main()
{
int selection;
float series, parallel,R1,R2,R3,E,Rtotal,I,VR3,IR1,VR1;
printf("**");
printf("\nEnter the value of R1= ");
scanf("%f",&R1);
printf("\nEnter the value of R2= ");
scanf("%f",&R2);
printf("\nEnter the value of R2= ");
scanf("%f",&R3);
printf("\nEnter the value of E= ");
scanf("%f",&E);
printf("\n**");
printf("\n1: Total Resistance (Rtotal)");
printf("\n2. Current I (I) ");
printf("\n3: Voltage drop across resistor R3 (VR3)");
printf("\n4. Current through esistor R1 (IR1)");
printf("\nPlease Select your choice ");
printf("\n**\n");
scanf("%d",&selection);

if (selection==1)
{

 Rtotal = 1/(1/R1 +1/R2+1/R3) ;
 printf(" Rtotal = 1/(1/R1 +1/R2+1/R3) \n");
 printf(" Total Resistance (RTotal) = %.6f Ohm\n",Rtotal);
}
else if (selection==2)
{
 Rtotal = 1/(1/R1 +1/R2+1/R3) ;
 I=E/Rtotal;
 printf(" Rtotal = 1/(1/R1 +1/R2+1/R3) & I=E/Rtotal\n");
 printf(" Current I = %.4f Ampere\n",I);
}
else if (selection==3)
{
 VR3 = E ;
 printf(" VR3 = E ; \n");
 printf(" Voltage drop across Resistor VR3 = %.4f Volt\n",VR3);
}
else if (selection==4)
{
 VR1=E;

52 | Page

 IR1 = VR1/R1 ;
 printf(" VR1=E & IR1 = VR1/R1 \n ");
 printf(" Current through Resistor R1 = %.4f Ampere\n",IR1);
}
else
{
 printf(" wrong choice \n ");
}
return 0;
}

53 | Page

4.0 INTRODUCTION

Selection statements are used when you need to perform an action once only, based on the
condition specified. You may, however need to repeat a particular action in some situations
again and again. Refer Figure 4.5.1. Consider the action of cycling to reach a destination.
You will repeat the process of pedalling till you reach the destination. This can be compared
to the concept of looping in programming languages. The mechanism of executing a set of
statements repeatedly as long as the specified condition is satisfied is called looping. The
statements that are executed repeatedly are termed as looping statements.

4.1 Looping statements

4.1.1 Define Looping statement

Looping statements are used to execute a set of statements repeatedly based on the

condition.

4.1.2 Types of Looping Statement

There are three types of looping statements available in C language. They are:

▪ for loop

▪ while loop

▪ do-while loop

4.1.3 Define FOR, WHILE, DO-WHILE loop statements

FOR: The for loop is a looping statement that enables you to repeat a set of instructions

based on the condition. It is used when the number of loops is known before the first

loop.

WHILE: The while loop is a looping statement that enables you to repeat a set of

instructions based on a condition. It is used when the number of loops is not known

before the first loop

 4.0 LOOPING

Note

54 | Page

DO-WHILE: The do-while loop is a looping statement that enables you to repeat a set of

instructions based on the condition. In a do-while loop, the body of the loop of executed

at least once before the condition is checked.

4.1.4 BREAK, CONTINUE and GOTO statements

The break Statement

Definition: The break statement will transfer the control to the statement outside the

loop.

It is often necessary to transfer control out of a loop without getting back to the condition

check. The break statement is used for this purpose. During execution, when the keyword

break is encountered within a loop, the control is immediately transferred to the first

statement outside the loop. A break statement is usually used along with an if statement.

The continue Statement

Definition: The continue statement will transfer the control to the beginning of the loop.

You can use the continue statement when you want the control to return to the beginning

of the loop without executing the rest of the statements in the loop. When the keyword

continue is encountered during the execution of the loop, the control is passed to the

beginning of the loop bypassing the rest of the statements in the loop.

The goto Statement

Definition: The goto statement will transfer the control to the specified label.

During execution, goto statement is used to transfer the control to the specified label

within the program. A label is a name that refers to a particular line in the program. A

program can have any number of labels, but each label name must be unique. A label

must be followed by a colon (:) before the C statement.

4.1.5 Describe structure of FOR, nested FOR, WHILE, DO-WHILE loop statements

FOR Loop

In a for loop, the first step is to assign the value of the initial counter. Next the condition

is checked in the test counter. Based on the condition, body of the loop is executed. The

55 | Page

value of the counter is then incremented as specified in the increment counter. The

condition is checked again and the body of the loop is executed.

The body of the loop will be executed as long as the test condition is satisfied. When the

condition fails, the control is passed to the first statement outside the loop.

The syntax for the for loop is:

for(<initial counter> ; <test counter> ; <increment counter>)

{

C statement 1;

C statement 2;

...

...

...

C statement n;

}

The initial, test and increment counters are specified in the header section of a for loop,

each separated by a semicolon (;).

Consider the example given in Code Segment 4.1.5:

 for(i=1 ; i<=5 ; i=i+1)

 {

 printf("\n %d,i);

 }

Code Segment 4.1.5

Output

1

2

3

4

5

Body of

the Loop

Header

Section

Initialise the counter value i to 1.

Checks the condition whether the

value of i is less than 5.

Increment the value of i by 1.

This statement will be executed when

the value of i is less than or equal to 5.

56 | Page

Figure 4.5.4 shows the flowchart for Code Segment 4.5.2.

Figure 4.1.5 : Flowchart

In Code Segment 4.1.5, i=1 is the initial counter, i<=5 is the condition and i=i+1 is the

increment counter. The following steps explain the execution of Code Segment 4.1.5:

1. When the control enters the loop for the first time, the value of i is initialised to 1 by

the initial counter.

2. Next, the condition is checked. If the value of i is less than or equal to 5, the control

is passed to the body of the loop.

3. The body of the loop is executed. Here, the value of i is displayed on the screen.

4. When the control reaches the closing brackets of the loop, the value of i is

incremented by 1.

5. Step 2, 3 and 4 are repeated as long as the test condition is satisfied.

6. When the test condition fails, the control comes out of the loop and the rest of the

program statements are executed.

Table 4.5.1 gives the details of the dry run for Code Segment 4.1.5:

i = 1

i <= 5

Print i

i = i + 1

Rest of the

Program
True

False

57 | Page

Dry run is the process of executing a program by hand. This is done by writing values of

variables and other run-time data on paper, in order to check its operation.

Value of i Condition Result Output

1 1 <= 5 True 1

2 2 <=5 True 2

3 3 <= 5 True 3

4 4 <= 5 True 4

5 5 <= 5 True 5

6 6 <= 5 False -

Table 4.1.5: Dry Run

WHILE loop

The while loop is similar to the for loop and is used to perform certain tasks repeatedly.

Use the while loop when the number of loops is not known before the first loop. This

will be known only during the run time, based on the input given by the user. Figure

4.1.6 represents the flowchart for the while loop.

Flowchart

Figure 4.1.6: Flowchart for while Loop

In a while loop, the condition is initially checked. Based on this the statements below the

while statement are executed. The general syntax for a while loop is:

Condition

Rest of the

Program

Body of the loop

False

True

58 | Page

Syntax

 <Initialise loop counter>;

 while(<conditional expression>)

 {

 Statement1;

 Statement2;

 ...

 ...

 ...

 <Increment loop counter>;

}

As shown in the syntax, the keyword while is followed by a conditional expression. The

condition is enclosed within a pair of brackets (). The while statement is followed by a

pair of curly brackets { } within which the statements, that are to be executed, are written.

You will notice that the counter value is initialised before the while statement. This

counter value is incremented within the body of the loop. Do not terminate the while

statement with a semicolon(;).

Code Segment 4.1.6 explains how a while loop can be used to print the numbers from 1

to 5:

 i = 1;

 while(i <= 5)

 {

 printf("\n%d",i);

 i++;

 }

Code Segment 4.1.6

Body of the

Loop

The value of i s initialised to 1.

Condition is checked.

This statement is executed when

the value of i is less than 6.

The value of i is incremented

59 | Page

Output:

1

2

3

4

5

The following steps explain the execution of Code Segment 4.5.5:

1. The value of the variable i is initialised to 1.

2. The condition is checked. If the value of i is less than or equal to 5, the control moves

into the body of the while loop.

3. The value is printed on the screen.

4. The value of i is incremented.

5. Step 2, 3 and 4 are repeated as long as the condition is satisfied.

6. When the condition is not satisfied, the control moves out of the loop.

DO-WHILE loop

The do-while loop is a variation of the while loop, with the only difference being the

location where the condition is checked, as shown in Figure 4.1.7.

Figure 4.1.7: Flowchart for do-while Loop

In a while loop, first the condition is checked, followed by and then the body of the loop

is executed. In a do-while loop, however, the body of the loop is first executed and the

condition is checked subsequently. In a do-while loop, the loop is executed at least once

Conditio
n

Rest of the

Program

Body of the loop

False

True

60 | Page

even if the condition is not satisfied. In the flowchart, notice that the condition is checked

after the execution of the statements within the body of the loop.

Syntax

 do

 {

 Statement1;

 Statement2;

 ...

 ...

 ...

 }while(<conditional expression>);

4.2 Understand Looping statements.

 4.2.1 Differentiate FOR, nested FOR, WHILE, DO-WHILE loop statements

 Difference between the looping structures in C

 Table 4.2.1 represents the difference between the various looping structures.

The for Loop The while Loop The do-while Loop

Used when the number
of loops is known
before the first loop.

Used when the number
of loops is not known
before the first loop.

Used when the number of
loops is not known before
the first loop.

First the condition is
checked and then the
body of the loop is
executed.

First the condition is
checked and then the
body of the loop is
executed.

Body of the loop is first
executed and then the
condition is checked.

Loop may not be
executed at all.

Loop may not be
executed at all.

Loop will get executed at
least once.

Table 4.2.1: Difference Between Various Looping Structure

4.2.2 Explain working of BREAK statement

It is often necessary to transfer control out of a loop without getting back to the

condition check. The break statement is used for this purpose. During execution, when

the keyword break is encountered within a loop, the control is immediately transferred

Body of the

Loop

61 | Page

to the first statement outside the loop. A break statement is usually used along with if

statement.

Program to illustrate the use of a break statement.

/* Program to illustrate the use of break statement */
#include <stdio.h>
void main()
{
 int i;
 for(i=1; i<=10; i++)
 {
 scanf("\n %d",&i);
if (i == 0)
 break; // This statement will exit from the for loop when the value of i is equal to 0.

 }
 printf("\n The control is out of the loop");
}

Code Sample 4.2.2

Output

4

3

6

8

0

The control is out of the loop

Flowchart for the execution of Code Sample 4.2.2 is given in the Figure 4.2.2.

62 | Page

Figure 4.2.2: Flowchart

Consider the program given in Code Sample 4.5.6. In this example, when the user

enters 0, the control is transferred to the statement outside the for loop.

4.3 Apply Looping statements

4.3.1 Construct program(s) that use FOR, nested FOR, WHILE, DO-WHILE loop

statements

a. Program use FOR : to print numbers from 1 to 5

#include <stdio.h>
main()
{
 int i;
 for(i=1; i<=5; i=i+1)
 {
 printf("\n %d",i);
 }
 printf("\n\n You are out of the for loop");
}

63 | Page

OUTPUT:
1
2
3
4
5
You are out of the for loop

b. Program use FOR : to print numbers from 10 to 1

#include <stdio.h>
main()
{
 int i;
 for(i=10; i>=1; i=i-2)
 {
 printf("\n %d",i);
 }
 printf("\n\n You are out of the for loop");
}

OUTPUT:
10
8
6
4
2
You are out of the for loop

c. Program use nested FOR

#include <stdio.h>
main()
{
 int i,j;
 for(i=1; i<=5; i=i+1)
 {
 for(j=10; j>=1; j=j-2)
 {
 printf("\n i=%d j=%d",i ,j);
 }
 printf("\n End of loop %d",i);
 }

 printf("\n\n You are out of the for loop");
}

64 | Page

OUTPUT:
i=1 j=10
i=1 j=8
i=1 j=6
i=1 j=4
i=1 j=2
End of loop 1
i=2 j=10
i=2 j=8
i=2 j=6
i=2 j=4
i=2 j=2
End of loop 2
i=3 j=10
i=3 j=8
i=3 j=6
i=3 j=4
i=3 j=2
End of loop 3
i=4 j=10
i=4 j=8
i=4 j=6
i=4 j=4
i=4 j=2
End of loop 4
i=5 j=10
i=5 j=8
i=5 j=6
i=5 j=4
i=5 j=2
End of loop 5
You are out of the for loop

d. Program use WHILE: to print numbers from 1 to 5

#include <stdio.h>
main()
{
 int i;
 i=1;
 while (i <= 5)
 {
 printf("\n %d",i);
 i++;
 }
 printf("\n\n You are out of while loop");
}

65 | Page

OUTPUT:
1
2
3
4
5

You are out of the for while loop

e. Program use WHILE: to print numbers from 10 to1

#include <stdio.h>
main()
{
 int i;
 i=10;
 while (i >= 1)
 {
 printf("\n %d",i);
 i=i-2;
 }
 printf("\n\n You are out of while loop");
}

OUTPUT:
10
8
6
4
2

You are out of the while loop

f. Program use DO-WHILE: to print numbers from 1 to 5

#include <stdio.h>
main()
{
 int i=1;
 do
 {
 printf("Value of variable i is: %d\n", i);
 i=i+1;
 }while (i<=5);
 printf("\n You are out of do-while loop");
 return 0;
}

66 | Page

OUTPUT:
Value of variable i is:1
Value of variable i is:2
Value of variable i is:3
Value of variable i is:4
Value of variable i is:5
You are out of the do-while loop

g. Program use DO-WHILE: to print numbers from 10 to 1

#include <stdio.h>
main()
{
 int i=10;
 do
 {
 printf("Value of variable i is: %d\n", i);
 i=i-2;
 }while (i>=1);
 printf("\n You are out of do-while loop");
 return 0;
}

OUTPUT:
Value of variable i is:10
Value of variable i is:8
Value of variable i is:6
Value of variable i is:4
Value of variable i is:2
You are out of the do-while loop

4.3.2 Construct program(s) that use before BREAK statements

#include <stdio.h>
main()
{
 int i;
 for(i=1; i<=6; i++)
 {
 printf("\n Value of variable i is: %d",i);
 }
 printf("\n The control is out of the for loop");
}

67 | Page

OUTPUT:
Value of variable i is:1
Value of variable i is:2
Value of variable i is:3
Value of variable i is:4
Value of variable i is:5
Value of variable i is:6

The control is out of the for loop

4.3.3 Construct program(s) that use BREAK statements

#include <stdio.h>
main()
{
 int i;
 for(i=1; i<=6; i++)
 {
 printf("\n Value of variable i is: %d",i);
 if (i == 3)
 break;
 }
 printf("\n The control is out of the for loop");
}

OUTPUT:
Value of variable i is:1
Value of variable i is:2
Value of variable i is:3
The control is out of the for loop

68 | Page

4.3.4 Construct program(s) that use GOTO statements

#include <stdio.h>
int main()
{
 int sum=0;
 for(int i = 0; i<=10; i++)
 {
 printf("\n Value of variable i is: %d",i);
 sum = sum+i;
 if(i==5)
 {
 goto addition;
 }
 }
 addition:
 printf("\n The sum of i=%d", sum);
 return 0;
}

OUTPUT:
Value of variable i is:0
Value of variable i is:1
Value of variable i is:2
Value of variable i is:3
Value of variable i is:4
Value of variable i is:5
The sum of i=15

a) List THREE(3) types of looping statements

b) The program below contains FIVE (5) errors. Find the errors and rewrite this program

with the correct code.

#include <stdio.x>
int main{}
{
int i=0, sum=0;
while (i <=5)
{
 sum +=i;
 printf('sum [%d]=%d\n",1, sum);
 i++;)
return 0;
}

Tutorial

69 | Page

c) Write a program which displays the following output by using do-while statements.

 Output:

 Value of a: 10

 Value of a: 11

 Value of a: 12

 Value of a: 13

 Value of a: 14

 Value of a: 15

 Value of a: 16

 Value of a: 17

 Value of a: 18

d) The loop statements consist of for, while and do-while. Program below uses for loop

statement to calculate the average of 5 numbers that entered by user. However the

program had some errors. Solve the errors and write the correct program. Then change

the program to do-while loop statement.

#include <studio.h>
void main()
{
Int no=1, total=0, Avg=0, num;

for (no=1;no<=5;no++)
{
 scanf("%c", &num);
 total=total+ Num;
}
 avg=total/5;
 printf(" Average=%d",avg);
return 0;
}

e) List the correct syntax of for loop.

f) Rewrite the above program segment to do-while statement.

#include <stdio.h>
main()
{
int a, jum;
for (a=1;a<10;a+=2)
{
 jum=jum+a;

printf("%d\n",a);
}
 printf(" Jumlah ialah %d\n",jum);

return 0;

}

70 | Page

g) Apply C language to write a program to print 10 times of the below statemen using for.

h) Produce C program to display multiplication table using while looping statement and

draw the flowchart. The example of a output as follows :

i) Define looping statement with an example.

j) Choose for loop statement to write a program code to display he output as below. The

symbol * must be stored in the variable.

k) Use the C language to write program using for loop statement which displays the output

below.

I want to get EXCELLENT in C Programming

Please enter number of multiplication table : 3

1 X 3 = 3

2 X 3 = 6

3 X 3 = 9

:

:

12 X 3 = 36

Value of a : 10

Value of a : 11

Value of a : 12

Value of a : 13

Value of a : 14

Value of a : 15

Value of a : 16

Value of a : 17

Value of a : 18

Value of a : 19

71 | Page

Program 1

#include <stdio.h>
main()
{
 int j;
 for (j=5; j<=50; j=j+3)
 {
 printf("Value of variable j is: %d\n",j);
 }
 return 0;
}

Program 2

#include <stdio.h>
main()
{
 int j;
 for (j=50; j>=5; j=j-3)
 {
 printf("Value of variable j is: %d\n",j);
 }
 return 0;
}

Program 3

#include <stdio.h>
main()
{
 int I,V;
 I=1;
 while (I <= 9)
 {
 V= I* 150;
 printf("\n Current at V%d = %d",I,V);
 I++;
 }
 printf("\n\n You are out of while loop");
 return 0;
}

Practical Activities

72 | Page

Program 4

#include <stdio.h>
main()
{
 int I,V;
 I=9;
 while (I >= 1)
 {
 V= I* 150;
 printf("\n Current at V%d = %d",I,V);
 I--;
 }
 printf("\n\n You are out of while loop");
 return 0;
}

Program 5

#include <stdio.h>
int main()
{
 int I,V;
 I=1;
 do
 {

V= I* 150;
 printf("\n Current at V%d = %d",I,V);
 I++;
 }while (I<=10);
 printf("\n\n You are out of while loop");
 return 0;
}

Program 5

#include <stdio.h>
int main()
{
 int I,V;
 I=10;
 do
 {

V= I* 150;
 printf("\n Current at V%d = %d",I,V);
 I--;
 }while (I>=1);
 printf("\n\n You are out of while loop");
 return 0;
}

73 | Page

5.1 INTRODUCTION

In your daily life, you depend on many appliances to complete your work. For example,

you might be using a washing machine to wash clothes, an oven to cook food and a

toaster to toast bread. These electronic appliances are used to accomplish specific

tasks quickly and easily. Programs too depend on elements such as functions to

perform specific tasks. C language offers various built-in functions. In this unit, you will

learn to use these built-in functions in the programs. You will also learn to define your

own functions according to the need.

5.2 Remember FUNCTION statements

5.2.1 Define FUNCTION statement

Definition: A function is a block of statements that perform a specific task.

Functions divide the code and modularize the program for better and effective

results. A larger program is divided into various subprograms which are called as

functions

5.2.2 Identify the need for FUNCTION statements

Advantages of Using Functions

Functions offer a number of advantages such as:

1. Reusability - A function once written can be used anywhere in a program. You

need not write the same set of statements repeatedly in a program.

2. Function Portability - You can use functions across many programs.

3. Modularity - You can break down large programs into simple functions. This will

make the program readable.

 5.0 FUNCTION

Note

74 | Page

4. Easy to Debug - Since functions make programs more readable, you can easily

debug programs.

5. Easy to Modify and Extend: As you can easily add or remove functions in

programs, the capability of programs can be easily extended.

A function will have the following three components:

▪ Function Header- Specifies the function name along with parameters.

▪ Function Body - Contains the actual code of the function.

▪ Return Statement - Returns a value to the main program.

5.2.3 Describe the structure of FUNCTION statements

Function Declaration

Specify the name of a function that we are going to use in our program like a

variable declaration. We cannot use a function unless it is declared in a program. A

function declaration is also called function prototype.

● return_data_type: is the data type of the value function returned back to

the calling statement.

● function_name: is followed by parentheses

● Arguments names with their data type declarations optionally are placed

inside the parentheses

return_data_type function_name (data_type arguments);

#include <stdio.h>

/*Function declaration*/

int add (int x,y);
/*End of Function declaration*/

main() {

75 | Page

Function Definition

Function definition means just writing the body of a function. A body of a function

consists of statements which are going to perform a specific task. A function body

consists of a single or a block of statements. It is also a mandatory part of a function.

Function definition syntax:

● Return Type - The type of the value that the function will return. The return

type can be of any data type. The default return type is integer.

● Function Name - Any valid name can be given as the function name. Rules

for naming a function name are same as that of a variable name.

● Arguments - The values or variables that the function requires along with

their data types. Arguments can also be referred to as parameters.

● Local Variable Declaration - The variables that are declared within the

functions.

● Function Statements - C statements within the function.

Example

int add (int x, int y) //function body

{

int z;
z=x+y;
return 0;
}

<return type> < function name> (< arguments>)
{
< local variable declarations>;
< function statemnets>;
}

int mul (int a,int b) // Function Name & Arguments
{
int prod; // Local Variable Declaration
prod = a * b; // Function Statements
return(prod); // Function Statements
}

76 | Page

Return Statement

The main function will call the user-defined function to perform the specified

action. Thus, main() is the calling function and the user-defined function is the

called function. The calling function is the function that calls the user-defined

function. The called function is the function that is being called by the calling

function.

When the main function calls another function, the control passes from main() to

the called function. After execution of the statements in the called function, the

control returns to main(). The called function may or may not return a value to

main(). The function will return a value to the calling function with the use of the

return statement. When the return statement is executed, the function execution

will be terminated and the control is passed back to the calling function.

5.3 Understand FUNCTION statements

5.3.1 Declaring a Function

A function can be declared either before defining the main function or after the

main function. When you define a function before the main function, it is not

necessary to declare the function. On the other hand, if you define a function after

main(), you must declare the function. This declaration, also known as function

prototype, notifies the compiler that the definition for this function will appear

later in the program. Function prototype is the function header with a semicolon

77 | Page

and is used for declaring the function before defining the function.

Example 1

void main()

{

int func(int,int); // Function Prototype

 …

 …

 …

}

Example 2

int func(int,int); // Function Prototype

void main()

{

 …

 …

 …

}

Remember the following points when you declare a function:

1. Mention the return type of the function. If the function is not returning any

value, the return type must be declared as void.

2. Specify the arguments along with their data type.

5.3.2 Passing Arguments to Functions

Functions are written to perform specific tasks. Functions might need values to

perform these tasks. These values can be accepted from the user either in the

called function or in the calling function. If the values are accepted in the calling

function, these values have to be passed to the called function. The values are

passed through the arguments during the function call. Function calls can be

classified into two types.

78 | Page

They are:

▪ Call by value

▪ Call by reference

Call by value refers to passing values as arguments to the function. Call by reference

refers to passing the address of the variables as argument to the function. In this

unit you will learn about call by value.

Call by Value – Direct Value

It is possible to pass values from one function to another function for performing

calculations. This type of a function call is referred to as call by value.

The call by value method of passing arguments to a function copies the actual value

of an argument into the formal parameter of the function. In this case, changes

made to the parameter inside the function have no effect on the argument.

By default, C programming uses call by value to pass arguments. In general, it

means the code within a function cannot alter the arguments used to call the

function. Consider the function poli() definition as follows.

5.4 Apply FUNCTION statements
5.4.1 Construct program(s) that use FUNCTION statement

#include <stdio.h>
main()
{
 void func1();
 printf("\n\n Control is in main function ");
 func1();
 printf("\n\n Control is back in main function ");
}
void func1()
{
 printf("\n\n Control is in function1 ");
}

/* function definition to swap the values */
void poli(int x, int y) {
 int temp;
 temp = x; /* save the value of x */
 x = y; /* put y into x */
 y = temp; /* put temp into y */
 return;
}

79 | Page

OUTPUT:

5.4.2 Construct program(s) that use Call by Value statements (Example 1)

#include <stdio.h>
int sum(int a, int b)
{
 int c=a+b;
 return c;
}
main()
{
 int num1,num2,num3;
 num1 =10;
 num2 = 20;
 printf(" \n Value of num1 is: %d", num1);
 printf(" \n Value of num2 is: %d", num2);
 num3 = sum(num1, num2);
 printf("\n sum of num1 & num2 = %d", num3);
 return 0;
}

OUTPUT:

5.4.3 Construct program(s) that use Call by Value statements (example 1)

#include <stdio.h>
int increment(int var)
{
 var = var+20;
 return var;
}

main()
{
 int num1,num2;
 num1=20;
 num2 = increment(num1);
 printf("num1 value is: %d", num1);
 printf("\nnum2 value is: %d", num2);
 return 0;
}

80 | Page

OUTPUT:

5.4.4 Construct program(s) that use Call by Reference statements (example 1)

#include <stdio.h>
void increment(int *var)
{

 *var = *var+10;
}
main()
{
 int num=1;
 increment(&num);
 printf("Value of num is: %d", num);
 return 0;
}

OUTPUT:

5.4.5 Construct program(s) that use Call by Reference statements(example 2)
#include <stdio.h>
void func_num (int *var1, int *var2)
{
 *var1 = *var1 +10 ;
 *var2 = *var2 +10 ;
}
main()
{
 int num1 = 10, num2 = 15 ;
 printf("Before Function:");
 printf("\nnum1 value is %d", num1);
 printf("\nnum2 value is %d", num2);

 /*calling function*/
 func_num(&num1, &num2);
 printf("\nAfter function:");
 printf("\nnum1 value is %d", num1);
 printf("\nnum2 value is %d", num2);
 return 0;

81 | Page

OUTPUT:

a) Explain the following function prototypes:

i. int func(void);

ii. char func(char a, char b);

iii. void func(void);

iv. void func(int a, char b);

v. float func(int a);

b) Declare the following functions:

vi. A function called change that will accept an integer value and return a float

value.

vii. A function called calc that will accept two float values but does not return any

value.

viii. A function called sample that will accept three integer values and return an

integer value.

ix. A function called convert that will accept an integer value and two float values

and return a float value.

x. A function called getdata that will not accept or return any value.

c) Write a program to find the sum of two numbers using functions. The function should

have no arguments and no return value.

d) Write a program to accept the number of books from the user in the main function. Write

a function to accept the book's name and their price. Write another function to display

these details.

e) Write a program to find the sum of 12+22+32+…+n2 using function.

Tutorial

82 | Page

f) Explain the structure of a function with an example.

g) Write a program to find the factorial value of a number. The function should have

argument but no return value.

h) Differentiate between local and global variables with an example each.

i) Write a function named square to calculate the area and perimeter of the square. Write

another function named rectangle to calculate the area and perimeter of the rectangle. The

main() should prompt the user to choose whether the calculation is for the rectangle or

square and the suitable function call must be made. Finally the area and perimeter must

be displayed on the screen.

Program 1:

#include <stdio.h>
int addition(int Rr1, int Rr2)
{
 int TotalR;
 TotalR = Rr1+Rr2;
 return TotalR;
}

int main()
{
 int R1, R2;
 printf("Enter value of R1: ");
 scanf("%d",&R1);
 printf("Enter value of R2: ");
 scanf("%d",&R2);
 int Total = addition(R1, R2);
 printf ("Output: %d", Total);
 return 0;
}

Program 2:

#include <stdio.h>
int kira()
{
 int R1, R2, Total;
 printf("Enter value of R1: ");

Practical Activities

83 | Page

 scanf("%d",&R1);
 printf("Enter value of R2: ");
 scanf("%d",&R2);
 Total = R1+R2;
 printf ("Output: %d", Total);
}
int main()
{
 kira();
 return 0;
}

Program 3:

#include <stdio.h>
void increment(int *Total)
{

 int R1, R2;
 printf("Enter value of R1: ");
 scanf("%d",&R1);
 printf("Enter value of R2: ");
 scanf("%d",&R2);
 *Total = R1+R2;

}
int main()
{
 int num=20;
 increment(&num);
 printf("Value of num is: %d", num);
 return 0;
}

Program 4:

#include <stdio.h>
int addNumbers(int a, int b); int main()
{
 int n1,n2,sum;
 printf("Enters two numbers: ");
 scanf("%d %d",&n1,&n2);

 sum = addNumbers(n1, n2);
 printf("sum = %d",sum);
 return 0;
}

84 | Page

int addNumbers(int a, int b)
{
 int result;
 result = a+b;
 return result;
}

85 | Page

 INTRODUCTION

An array is a collection of data items, all of the same type, accessed using a common
name. A one-dimensional array is like a list; A two dimensional array is like a table; The C
language places no limits on the number of dimensions in an array, though specific
implementations may.

6.1 Remember ARRAYS

6.1.1 Define ARRAY statement

Definition: Array is a collection of values having similar data type and are stored in

consecutive memory locations.

6.1.2 Identify the need for ARRAY in programming

An array is a data structure, which can store a fixed-size collection of elements of the

same data type. An array is used to store a collection of the same type data.

6.1.3 Describe the structure of ARRAY

Definition: A single-dimensional array, also referred as 1D array, will have a single row

and can have any number of columns.

Single-dimensional arrays will have only one subscript. Subscript refers to the dimension

of the array.

When you declare a single-dimensional array as x[7], it means that the array has one row

and seven columns, as shown in Figure 6.1.3.a. This array can thus hold up to seven values.

 6.0 ARRAY

Note

86 | Page

Figure 6.1.3.a: Representation of a Single-Dimensional Array

Declaring an Array

Syntax

 <Data type> <Variable name>[Size of the array];

Example

int x[3];

Data type variable Saiz of the array

int x [3]

Figure 6.1.3.b: Declaring an Array

Here x is an array variable that can hold three values. Each value is referred as an element.
This array, therefore, will have three elements of integer data type. Notice that the array
size is specified within the square brackets [] as shown in Figure 6.1.3.b.

6.1.4 Initialising an Array

 Syntax

Example

 1 2 3 4 5 6 7

X[0] X[1] X[2] X[3] X[4] X[5] X[6]

Row

Columns

x[0] = 15;

x[1] = 26;

x[2] = 37;

<Variable name> [Array index] = <Value>;

87 | Page

Refer to Figure 6.1.4.a, x[0], x[1] and x[2] refers to the first, second and third elements,

respectively. The first element will always have the array index as 0 as shown in Figure

6.1.4.b. Array index refers to the location of the values in an array.

X[0] X[1] X[2]

1st Element 2nd Element 3rd Element

Figure 6.1.4.a : Array Elements

X[0] X[1] X[2]

15 26 37

1st Element 2nd Element 3rd Element

Figure 6.1.4.b : Representation of Index in Array Elements

In the Figure 6.1.4.c, you will notice that the values in an array are stored in consecutive

memory locations.

Figure 6.1.4.c : Array Elements Stored In Consecutive Memory Locations

You can initialise the array at the time of declaration in the following manner:

int x[3] = {15,26,37};

When initialising an array, the values are enclosed within the curly brackets { }.

You will be able to access the array elements through the array index. For example, if

you need to print the second element of the array, the code will be:

printf(" %d",x[1]);

 15 26 37

x[0] x[1] x[2]

88 | Page

Program to declare and initialise an array

#include <stdio.h>

main()

{

 int x[3]={15,26,37};

 printf("\n x[0] (1st element) : %d",x[0]); // Displays the 1st element.

 printf("\n x[1] (2nd element) : %d",x[1]); // Displays the 2nd element.

 printf("\n x[2] (3rd element) : %d",x[2]);// Displays the 3rd element.

}

Output

 x[0] (1st element) : 15

 x[1] (2nd element) : 26

 x[2] (3rd element) : 37

6.1.5 Entering Data into an Array

You know that an array can have any number of elements in it. If an array has 100

elements, it is not possible to accept all 100 values through 100 scanf statements.

Therefore, it is better to use a for loop along with arrays, to accept and display the values.

for(i=0; i<=9; i++)

scanf("%d",&x[i]);

Code Segment 6.1.5

The following steps explain the execution of Code Segment 6.1.5:

1. Initially the value of i is initialised to 0. Now, x[i] becomes x[0], which is the first

element in the array.

2. The condition (i<=9) is now checked and if the condition is true, the next step is

executed.

3. Now, the scanf statement will accept the value from the user.

4. The value of the variable i is incremented by 1.

89 | Page

5. Step 2, 3 and 4 is repeated till the condition fails. Once the condition fails, the control

comes out of the for loop.

As the array has to accept ten values, the array index is specified only till 9. x[9] is the 10th

element in the array, as the index starts from zero .

Table 6.1.5 gives the details for the dry run for Code Segment 6.1.5.

Table 6.1.5: Dry run Code Segment 6.1.5.

Value of i

[Array index]
Condition x[i] Element

0 True x [0] 1st

1 True x [1] 2nd

2 True x [2] 3rd

3 True x [3] 4th

4 True x [4] 5th

5 True x [5] 6th

6 True x [6] 7th

7 True x [7] 8th

8 True x [8] 9th

9 True x [9] 10th

10 False - -

6.1.6 Reading Data from an Array

You should be familiar with how to enter a data into an array. Now, you will learn how to

read the data stored in an array. You can use a for loop with single printf statement to

print the values from an array.

for(i=0; i<=9; i++)

printf("%d",x[i]);

Code Segment 6.1.6

The following steps explain the execution of Code Segment 6.1.6 :

1. Initially the value of i is initialised to 0. Now, x[i] becomes x[0], which is the first element

in the array.

90 | Page

2. The condition (i<=9) is now checked and if the condition is true, the next step is

executed.

3. Now the printf statement will print the value on the screen.

4. The value of the variable i is incremented by 1.

5. Step 2, 3 and 4 is repeated till the condition fails. Once the condition fails, the control

comes out of the for loop.

Program to accept 10 values from the user and to print the values on the screen.

/* Program to accept 10 values from the user and to print them on the screen */

#include <stdio.h>
void main()
{
 int x[10],i;
 printf("\n Enter the array values : \n\n");
 for(i=0; i<10; i++) // Array index starts with 0 - 9

 {
 printf("\t x[%d] = ",i);
 scanf("%d",&x[i]);
 }
 printf("\n The array values are : \n");
 for(i=0; i<10; i++)
 printf("\n\t x[%d] = %d ",i,x[i]);
}

Code Sample 6.1.6
Output

6.2 Understand ARRAY

6.2.1 Differentiate the one, two and three Dimensional ARRAY in C language

Multidimensional arrays are arrays with more than one dimension. Multidimensional

arrays are used to represent data in terms of rows and columns. A multidimensional array

91 | Page

that has two subscripts is called two-dimensional array (also known as 2-D arrays). A two-

dimensional array is an array of single-dimensional arrays. Similarly, a three-dimensional

array (also called a 3-D array) is an array of two-dimensional arrays. In other words, an n-

dimensional array is an array of (n-1) dimensional arrays.

6.2.2 Two-Dimensional Array

Single-dimensional array stores the simple list of values in a linear fashion. A two-

dimensional array will have n number of rows and m number of columns.

A two-dimensional array is also referred as matrix, which is the combination of rows and

columns. Figure 6.2.3b illustrates the arrangement of rows and columns in a two

<Data type> <Variable name> [Array index] ;

<Data type> <Variable name>[Number of rows][Number of columns];

syntax

syntax

<Data type> <Variable name>[N1][N2][N3];

syntax

92 | Page

dimensional array. The array always starts with 1st row and 1st column and the array

index for which will be 0 (represents first row), 0 (represents first column).

Figure 6.2.2 : Representation of 2-D Array

6.2.3 Declaring a Two-Dimensional Array

When declaring a two-dimensional array, you need to mention the data type of the

variable and the number of rows and columns.

Syntax

<Data type> <Variable name>[Number of rows][Number of columns];

Example

int x[5][5];

Here, x is an array variable, which has five rows and five columns, as shown in Figure 6.2.3.

This array can hold twenty five values (5*5).

Data type variable Number of Rows Number of Columns

int X [4] [4]

Figure 6.2.3 : Declaring a 2-D Array

<Data type> <Variable name>[N1][N2][N3]...[Nn];

Row 1

Row 2

Row 3

Row 4

Row 5

C
o
lu

m
n

 1

C
o
lu

m
n

 2

C
o
lu

m
n

 3

C
o
lu

m
n

 4

C
o
lu

m
n

 5

 0 1 2 3 4

0

1

2

3

4

93 | Page

6.2.4 Initialising a Two-Dimensional Array

A two-dimensional array can be initialised in the same way as how a single-dimensional

array is initialised, as shown here:

Syntax

<Variable name> [Row][Column] = <Value>;

Example

 int x[5][5]={ {40,50,87,66,45},

 {54,72,24,36,77},

 {88,66,76,76,77},

 {22,56,89,33,44},

 {78,65,56,87,95} };

Figure 6.2.4.a clearly shows the array index of the various elements of the array. Notice

that the first element in the array has the index 0,0. Figure 6.2.4.b and 6.2.4.c represents

the elements of the array x arranged in rows and columns.

Figure 6.2.4.a: Array Index of the Elements of a Two-Dimensional Array

94 | Page

Figure 6.2.4.b: Elements of a Two-Dimensional Array

Figure 6.2.4c: Two-Dimensional Array Representation

Refer to Figure 6.2.4.d and 6.2.4.e to understand how array elements and array indexes
are represented.

x [0] [0] x [0] [1]

1st Element

 2nd Element

Figure 6.2.4.d : Array Elements

x [0] [0] =40 x [0] [1] =50

 1st
Row

1st
Column

 1st Row 2nd
Column

Figure 6.2.4.e : Array Index

95 | Page

6.2.5 Accessing Array Elements

You can access the array elements by using the array index. For example, if you want to

print the element in the third column of the second row of an array, use the following

code:

printf("\n x[2][3] %d",x[2][3]);

6.2.6 Entering Data in a Two-Dimensional Array

To enter data into a two-dimensional array, you need to specify the row and the

column number. In a single-dimensional array, you used a single for loop to enter data

into the columns of the single row. In a two-dimensional array, you will use two for

loops to enter data into the array. One for loop will be used for specifying the row

number and the other for loop will be used for specifying column number.

a. Nested for loop

You can nest the for loops in the same way as you nest the if statements. Nesting

for loops refers to using a for loop within a for loop. You can have any number loops

within a loop. The general syntax of nested for loop is as follows:

Syntax

 for(... ; ... ; ...)

 {

 for(... ; ... ; ...)

 {

 ...

 ...

 ...

 }

 }

In a nested for loop, the control begins from the outer loop. The control then passes to

the inner loop. The inner loop will be executed until the condition specified in the inner

 Outer Loop Inner Loop

96 | Page

loop fails. After executing the inner loop completely, the control passes to the outer loop

to execute the next iteration of the outer loop. To understand the working of a nested for

loop clearly, examine Code program 6.2.6:

 #include<stdio.h>
main ()
{

 int i,j;
 for(i=2;i<=3;i++)
 {
 for(j=10;j<=11;j++)
 {
 printf("\n %d %d",i,j);
 }
 }

}

Code program 6.2.6

Output

The flowchart for the execution of Code Segment 6.2.6 is shown in the Figure 6.2.6.

97 | Page

Figure 6.2.6: Flowchart

The following steps explain the execution of Code Segment 6.2.6:

1. In the outer loop, the value of i is initialised to 2.

2. The test condition is executed and if the condition is true, that is if the value is less

than or equal to 3, the control moves to the inner loop.

3. Now the value of j is initialised to 10.

4. Test condition for the inner loop is checked. If the condition is true, which happens

when the value of j is less than or equal to 11, the control moves to the body of the

inner loop.

5. The value of the variables i and j are printed.

6. The control again moves to the inner for loop statement and the value of j is

incremented.

7. Steps 4, 5 and 6 are executed until the test condition in the inner loop is true.

8. When the test condition in the inner loop is false, the control passes to the outer loop.

9. Now the value of i is incremented.

10. Steps 2 to 9 are executed as long as the test condition in the outer loop is true.

98 | Page

11. When the test condition is not satisfied, the control comes out of the loop and the rest

of the program statements are executed.

Table 6.2.6 gives the details of the dry run for Code Segment 6.2.6.

Value of i Condition for
i

Value of j Condition for
j

Result Output

i j

1 2 <= 3 - - True - -

1 - 10 10 <= 11 True 2 10

1 - 11 11 <= 11 True 2 11

1 - 12 12 <= 11 False - -

2 3 <= 3 - - True - -

2 - 10 10 <= 11 True 3 10

2 - 11 11 <= 11 True 3 11

2 - 12 12 <= 11 False - -

3 4 <= 3 - - False - -

Table 6.2.6: Dry Run

6.3 Apply ARRAYS

6.3.1 Construct program(s) that use ARRAY in C Language

#include <stdio.h>
main()
{
 int i,j;

 for(i=5; i<=10; i=i+2) // working of a nested for loop
 {
 printf("\n\n Inside the outer loop i =%d",i);
 for(j=10; j>=5; j=j-2)
 printf("\n Inside the inner loop j =%d",j);
 }
}

Code Sample 6.3.1a

99 | Page

Output

6.3.2 Construct program(s) that use Two Dimensional ARRAY in C Language

You can read the data entered into an array. You can use a nested for loop with a single

printf statement to display all the values of a two-dimensional array on the screen.

Consider the Code Segment 6.3.2:

for(i=0; i<=2; i++)

 for(j=0; j<=2; j++)

 printf("\n%d",x[i][j]);

Code Segment 6.3.2

The following steps explain the execution of Code Segment 6.3.2 :

1. The value of i is initialised to 0. This value is used to refer to the 1st row.

2. The condition for i is then checked. If the condition is true, that is if the value of i is less

than or equal to 2 the control is passed to the inner loop.

3. The value of j is initialised to 0. This value is used to refer to the 1st column.

4. The condition for j is checked. If the condition is true, that is if the value of j is less

than or equal to 2, the control is passed to the body of the loop.

5. The printf statement will print the value on the screen.

6. The control is again passed to the inner for loop and the value of j is incremented by 1.

7. Steps 4,5 and 6 are executed till the condition for j is faise.

8. When the condition for j fails, the control is passed to the outer loop. Here, the value

of i is incremented by 1.

100 | Page

9. Steps 2 to 9 are executed till the condition for i is false.

10. When the condition fails, the control comes out of the for loop.

6.3.3 Hands-On!

The following program will accept integer values from the user; store it in a two-

dimensional array and display the values on the screen.

#include <stdio.h>
main()
{
 int x[3][3],i,j;
 printf("\n Enter the array : \n");
 for (i=0; i<=2; i++)
 {
 printf("\n");
 for(j=0; j<=2; j++)
 {
 printf("\t X[%d][%d] = ",i,j);
 scanf("%d",&x[i][j]);
 }
 }
 printf("\nThe array is : \n");
 printf("\nThe array is : \n");
 printf("\n\t\t Column 1 \t Column 2 \t Column 3\n");
 for(i=0; i<=2; i++)
 {
 printf("\n");
 printf(" Row %d ",i+1);
 for(j=0; j<=2; j++)
 {
 printf("\t X[%d][%d] = %d ",i,j,x[i][j]);
 }
 }
}

Code Sample 6.3.3

Output

101 | Page

a. What is an array? List the types of array in C language.

b. Define a single-dimensional integer array called arr1 with 5 elements. Assign the

values 15,24,33,55 and 100 to the array elements.

c. Declare and initialise an array that can hold the values 3, 5 and 7.

d. Explain the need for arrays with an example.

e. Write a program to accept ten numbers and find their average.

f. Write short notes on single-dimensional array. How will you declare and initialise a

single-dimensional array?

g. Write a program to accept ten numbers and arrange the elements in the ascending

order.

h. Write a program to accept two arrays (4 elements each). Find the sum of two

arrays.

i. Write a program to accept five elements of an array. Decrement the value of each

element by two and display the array.

j. Write a program to accept the array size from the user. Accept the array elements

from the user and display the same on the screen.

k. Write a program to accept 15 elements of an array. Find the sum of the elements.

l. Write a program to accept 10 numbers from the user. Find the number of positive

and negative numbers.

m. Write a program to accept 6 elements of an array and display the array in reverse

order.

n. The following figure represents the data stored in a two-dimensional array.

o. Based on this figure, answer the following questions:

Tutorial

102 | Page

i. How many rows are present in the array?

ii. How many columns are present in the array?

iii. How many elements are present in the array?

iv. What is the value of the 3rd element in the array?

v. What is the array index of the 11th element?

vi. In which row is the value 90 present?

vii. In which column is the value 6 present?

viii. What is the value of the element x[2][2]?

ix. How will you access the value 65 in the array?

p. Consider a 3 X 3 integer array arr.

i. Write the declaration for arr.

ii. How many columns does the array have?

iii. How many rows does the array have?

iv. How many elements are present in the array?

v. What are the elements present in the 1st row.

vi. What are the element present in the 3rd column.

vii. Initialise the value of each element to ten (without using for loop).

viii. Initialise the value of each element to ten (using for loop).

q. Write a program to accept English and Mathematics marks of 6 students. Display

the same.

i. In the same program, calculate the total marks scored by each student.

ii. Calculate the average marks in English and Mathematics in the same program.

r. Write a program to accept the values for a 2X3 dimension array. Display the values

in the matrix form.

i. In the same program, write code to count the number of zeros stored in the

array.

ii. Calculate the sum of all the values stored in the array.

s. Write a program to accept the values for a 2X4 dimension array. Display the values

in the matrix form.

i. Increment the value of each element by one and display the matrix.

ii. Calculate the sum of the diagonal elements.

103 | Page

Program 1:

#include <stdio.h>
main()
{
 int array[10] = {11, 12, 13, 14, 15, 16, 17, 18, 19, 20};
 printf(" array[10] = {11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ");
 printf("\n array [0]=%d ", array[0]);
 printf("\n array [3]=%d ", array[3]);
 printf("\n array [5]=%d ", array[5]);
 printf("\n array [6]=%d ", array[6]);
 printf("\n array [2]=%d ", array[2]);
 printf("\n array [9]=%d ", array[9]);
 return 0;
}

Program 2:

#include <stdio.h>
main()
{
 int x, array[10] = {11, 12, 13, 14, 15, 16, 17, 18, 19, 20};
 printf(" array[10] = {11, 12, 13, 14, 15, 16, 17, 18, 19, 20}");
 for(x = 0; x < 10; x++)
 printf("\n array [%d] = %d ", x,array[x]);
 return 0;
}

Program 3:

#include <stdio.h>
main()
{
 int x, array[10];
 printf(" array[10] \n");
 for(x = 0; x < 10; x++)
 {
 printf("array [%d] = ", x);
 scanf ("%d",&array[x]);
 }
 for(x = 0; x < 10; x++)
 printf("\n array [%d] = %d ", x,array[x]);
 return 0;
}

Practical Activities

104 | Page

Program 4:

#include <stdio.h>
main()
{
 int array[2][5] = {{1,2,3,4,5},{6,7,8,9,10}};
 printf(" array[2][5] = {1,2,3,4,5},{6,7,8,9,10} ");
 printf("\n array [0][0]=%d ", array[0][0]);
 printf("\n array [1][3]=%d ", array[1][3]);
 printf("\n array [0][4]=%d ", array[0][4]);
 printf("\n array [0][2]=%d ", array[0][2]);
 printf("\n array [1][4]=%d ", array[1][4]);
 printf("\n array [1][1]=%d ", array[1][1]);
 return 0;
}

Program 5:

#include <stdio.h>
main()
{
 int array[4][4] ={{0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15}};
 printf(" array[4][4] ={{0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15} ");
 printf("\n array [0][0]=%d ", array[0][0]);
 printf("\n array [1][1]=%d ", array[1][1]);
 printf("\n array [2][2]=%d ", array[2][2]);
 printf("\n array [3][3]=%d ", array[3][3]);
 printf("\n array [0][3]=%d ", array[0][3]);
 printf("\n array [3][0]=%d ", array[3][0]);
 return 0;
}

Program 6:

#include <stdio.h>
main()
{
 int x,y, array[4][4] ={{0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15}};
 printf(" array[4][4] ={{0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15} ");
 for(x = 0; x < 4; x++)
 {
 for(y = 0; y < 4; y++)
 printf("\n array [%d][%d] = %d ", x,y,array[x][y]);
 }
 return 0;
}

105 | Page

Program 7:

#include <stdio.h>
main()
{
 int x,y, array[2][2];
 printf(" for array[2][2] \n ");
 for(x = 0; x < 2; x++)
 {
 for(y = 0; y < 2; y++)
 {
 printf("array [%d][%d] = ", x,y);
 scanf ("%d",&array[x][y]);
 }
 }
 for(x = 0; x < 2; x++)
 {
 for(y = 0; y < 2; y++)
 printf("\n array [%d][%d] = %d ", x,y,array[x][y]);
 }
 return 0;
}

Program 8:

#include <stdio.h>
main()
{
 int x,y, array[5][5];
 printf(" for array[5][5] \n ");

 for(x = 0; x < 5; x++)
 {
 for(y = 0; y < 5; y++)
 {
 printf("array [%d][%d] = ", x,y);
 scanf ("%d",&array[x][y]);
 }
 }
 for(x = 0; x < 5; x++)
 {
 for(y = 0; y < 5; y++)
 printf("\n array [%d][%d] = %d ", x,y,array[x][y]);
 }
 return 0;
}

106 | Page

ARDUINO

1. Introduction of Auduino

a. Arduino is a tool for making computers that can sense and control more of the

physical world than your desktop computer. It's an open-source physical

computing platform based on a simple microcontroller board, and a

development environment for writing software for the board.

a. Arduino can be used to develop interactive objects, taking inputs from a

variety of switches or sensors, and controlling a variety of lights, motors, and

other physical outputs.

a. Arduino projects can be stand-alone, or they can be communicate with

software running on your computer (e.g. Flash, Processing, MaxMSP.) The

boards can be assembled by hand or purchased pre-assembled; the open-

source IDE can be downloaded for free.

a. The Arduino programming language is an implementation of Wiring, a similar

physical computing platform, which is based on the Processing multimedia

programming environment.

 7.0 DEMONSTRATE THE I/O OPERATION

107 | Page

1. LED Blinking with Arduino Uno

LED Blinking with Arduino Uno

// The setup function runs when you press reset or power the board

void setup()

{

 // initialize digital pin 0 as an output.

pinMode(0, OUTPUT);

 }

// the loop function runs over and over again forever

void loop()

{

digitalWrite(0, HIGH); // turn the LED on (HIGH is the voltage level)

delay(500); // wait for a second

digitalWrite(0, LOW); // turn the LED off by making the voltage LOW

delay(500); // wait for a second

}

https://circuitdigest.com/microcontroller-projects/arduino-uno-led-blinking
https://circuitdigest.com/microcontroller-projects/arduino-uno-led-blinking

108 | Page

2. LED Blinking with Arduino Uno

Step 1: Introduction
In this lesson , we build the first external circuit and control it from Arduino. We use
digitalWrite command to turn LED on and off.

Step 2 : Materials

2 x LED
Arduino
1 x USB cable
Breadboard
Jumper Wires

Step 3 : Circuit Diagram

Step 4 : Diagram

https://circuitdigest.com/microcontroller-projects/arduino-uno-led-blinking

109 | Page

Step 5 : The Code
int led1=1;
int led2=2;
void setup() {
pinMode(led1,OUTPUT);
pinMode(led2,OUTPUT);
}
void loop() {
digitalWrite (led1, HIGH);
delay (500);
digitalWrite (led1, LOW);
delay (500);
digitalWrite (led2, HIGH);
delay (500);
digitalWrite (led2, LOW);
delay (500);
}

3. 4 LED Blinking with Arduino Uno

Step 1 : Introduction
In this lesson, we build the first external circuit and control it from Arduino. We use
digitalWrite command to turn LED on and off.

Step 2 : Materials

4 x LED
Arduino
1 x USB cable
Breadboard
Jumper Wires

Step 3 : Circuit Diagram

https://circuitdigest.com/microcontroller-projects/arduino-uno-led-blinking

110 | Page

Step 4 : Diagram

Step 5 : The Code
int led1=1;
int led2=2;
int led3=3;
int led4=4;
void setup() {
pinMode(led1,OUTPUT);
pinMode(led2,OUTPUT);
pinMode(led3,OUTPUT);
pinMode(led4,OUTPUT);
}
void loop() {
digitalWrite (led1, HIGH);
delay (500);
digitalWrite (led1, LOW);
delay (500);
digitalWrite (led2, HIGH);
delay (500);
digitalWrite (led2, LOW);
delay (500);
digitalWrite (led3, HIGH);
delay (500);
digitalWrite (led3, LOW);
delay (500);
digitalWrite (led4, HIGH);
delay (500);
digitalWrite (led4, LOW);
delay (500);
}

111 | Page

4. Multiple Blink LED

Step 1 : Introduction
In this lesson , we build the first external circuit and control it from Arduino. We use
digitalWrite command to turn LED on and off.

Step 2 : Materials

8 x LED
Arduino
1 x USB cable
Breadboard
Jumper Wires

Step 3 : Circuit Diagram

Step 4 : Diagram

Step 5 : The Code
int led1=1;
int led2=2;
int led3=3;
int led4=4;
int led5=5;
int led6=6;
int led7=7;

112 | Page

int led8=8;
void setup() {
pinMode(led1,OUTPUT);
pinMode(led2,OUTPUT);
pinMode(led3,OUTPUT);
pinMode(led4,OUTPUT);
pinMode(led5,OUTPUT);
pinMode(led6,OUTPUT);
pinMode(led7,OUTPUT);
pinMode(led8,OUTPUT);
}
void loop() {
digitalWrite (led1, HIGH);
delay (500);
digitalWrite (led1, LOW);
delay (500);
digitalWrite (led2, HIGH);
delay (500);
digitalWrite (led2, LOW);
delay (500);
digitalWrite (led3, HIGH);
delay (500);
digitalWrite (led3, LOW);
delay (500);
digitalWrite (led4, HIGH);
delay (500);
digitalWrite (led4, LOW);
delay (500);
digitalWrite (led5, HIGH);
delay (500);
digitalWrite (led5, LOW);
delay (500);
digitalWrite (led6, HIGH);
delay (500);
digitalWrite (led6, LOW);
delay (500);
digitalWrite (led7, HIGH);
delay (500);
digitalWrite (led7, LOW);
delay (500);
digitalWrite (led8, HIGH);
delay (500);
digitalWrite (led8, LOW);
delay (500);
}

113 | Page

5. Model Traffic Signal

Step 1 : Introduction
So now we know how to set a digital pin to be an input, we can build a project for
model traffic signals using red, yellow, and green LEDs. Every time we press the
button, the traffic signal will go to the next step in the sequence. In the UK, the
sequence of such traffic signals is red, red and amber together, green, amber, and
then back to red. As a bonus, if we hold the button down, the lights will change in
sequence by themselves with a delay between each step.

Step 2 : Components And Equipment

Arduino UNO
4x 220 ohm resistor
hook-up wires
breadboard
red LED
yellow LED
green LED
1x push switch

Step 3 : Circuit Diagram

Step 4 : Diagram

R1

S

R
1

R
1

R
1

R Y G

114 | Page

Step 5 : The Code
int redPin = 2;
int yellowPin = 3;
int greenPin = 4;
int buttonPin = 5;
int state = 0;
void setup()
{
pinMode(redPin, OUTPUT);
pinMode(yellowPin, OUTPUT);
pinMode(greenPin, OUTPUT);
pinMode(buttonPin, INPUT);
}
void loop()
{
if (digitalRead(buttonPin))
{
if (state == 0)
{
setLights(HIGH, LOW, LOW);
state = 1;
}
else if (state == 1)
{
setLights(LOW, HIGH, LOW);
state = 2;
}
else if (state == 2)
{
setLights(LOW, LOW, HIGH);
state = 3;
}
else if (state == 3)
{
setLights(LOW, HIGH, LOW);
state = 0;
}
delay(1000);
}
}
void setLights(int red, int yellow,
int green)
{
digitalWrite(redPin, red);
digitalWrite(yellowPin, yellow);
digitalWrite(greenPin, green);
}

115 | Page

6. Model Traffic Signal (auto)

Step 1 : Introduction
So now we know how to set a digital pin to be an input, we can build a project for
model traffic signals using red, yellow, and green LEDs. Every time we press the
button, the traffic signal will go to the next step in the sequence. In the UK, the
sequence of such traffic signals is red, red and amber together, green, amber, and
then back to red. As a bonus, if we hold the button down, the lights will change in
sequence by themselves with a delay between each step.

Step 2 : Components And Equipment

Arduino UNO
3x 220 ohm resistor
hook-up wires
breadboard
red LED
yellow LED
green LED

Step 3 : Circuit Diagram

Step 4 : Diagram

116 | Page

Step 5 : The Code
int red = 2;
int yellow = 3;
int green = 4;
int x;
void setup()
{
pinMode(red, OUTPUT);
pinMode(yellow, OUTPUT);
pinMode(green, OUTPUT);
}
void loop()
{
digitalWrite (red, HIGH);
digitalWrite (yellow, LOW);
digitalWrite (green, LOW);
delay(500);
digitalWrite (red, LOW);

digitalWrite (yellow, LOW);
digitalWrite (green, HIGH);
delay(500);
digitalWrite (green, LOW);

for(x=1; x<=4;x++)
{
digitalWrite (yellow, LOW);
delay(500);
digitalWrite (yellow, HIGH);
delay(500);
}
}

7. Model Traffic Signal (auto 2 traffic light)

117 | Page

Step 1 : Introduction
So now we know how to set a digital pin to be an input, we can build a project for
model traffic signals using red, yellow, and green LEDs. Every time we press the
button, the traffic signal will go to the next step in the sequence. In the UK, the
sequence of such traffic signals is red, red and amber together, green, amber, and
then back to red. As a bonus, if we hold the button down, the lights will change in
sequence by themselves with a delay between each step.

Step 2 : Components And Equipment

Arduino UNO
2x 220 ohm resistor
hook-up wires
breadboard
2x red LED
2x yellow LED
2x green LED

Step 3 : Circuit Diagram

Step 4 : Diagram

Step 5 : The Code
int red = 2;

118 | Page

int yellow = 3;
int green = 4;
int red2 = 5;
int yellow2 = 6;
int green2 = 7;
int x;
void setup()
{
pinMode(red, OUTPUT);
pinMode(yellow, OUTPUT);
pinMode(green, OUTPUT);
pinMode(red2, OUTPUT);
pinMode(yellow2, OUTPUT);
pinMode(green2, OUTPUT);

}
void loop()
{
digitalWrite (red, HIGH);
digitalWrite (yellow, LOW);
digitalWrite (green, LOW);
digitalWrite (red2, HIGH);
digitalWrite (yellow2, LOW);
delay(1000);
digitalWrite (red2, LOW);
digitalWrite (green2, HIGH);
delay(5000);
digitalWrite (green2, LOW);
for(x=1; x<=5;x++)
{
digitalWrite (yellow2, LOW);
delay(500);
digitalWrite (yellow2, HIGH);
delay(500);
}
digitalWrite (red2, HIGH);
digitalWrite (yellow2, LOW);
digitalWrite (green2, LOW);
digitalWrite (red, HIGH);
digitalWrite (yellow, LOW);
delay(1000);
digitalWrite (red, LOW);
digitalWrite (green,HIGH);
delay(5000);
digitalWrite (green,LOW);

for(x=1; x<=5;x++)
{
digitalWrite (yellow, LOW);

119 | Page

delay(500);
digitalWrite (yellow, HIGH);
delay(500);
}
}

8. Model Traffic Signal (auto 3 traffic light)
Step 1 : Introduction

So now we know how to set a digital pin to be an input, we can build a project for
model traffic signals using red, yellow, and green LEDs. Every time we press the
button, the traffic signal will go to the next step in the sequence. In the UK, the
sequence of such traffic signals is red, red and amber together, green, amber, and
then back to red. As a bonus, if we hold the button down, the lights will change in
sequence by themselves with a delay between each step.

Step 2 : Components And Equipment

Arduino UNO
3x 220 ohm resistor
hook-up wires
breadboard
3x red LED
3x yellow LED
3x green LED

Step 3 : Circuit Diagram

120 | Page

Step 4 : Diagram

Step 5 : The Code

int red = 1;
int yellow = 2;
int green = 3;
int red2 = 4;
int yellow2 = 5;
int green2 = 6;
int red3 = 7;
int yellow3 = 8;
int green3 = 9;
int x;
void setup()
{
pinMode(red, OUTPUT);
pinMode(yellow, OUTPUT);
pinMode(green, OUTPUT);
pinMode(red2, OUTPUT);
pinMode(yellow2, OUTPUT);
pinMode(green2, OUTPUT);
pinMode(red3, OUTPUT);
pinMode(yellow3, OUTPUT);
pinMode(green3, OUTPUT);
}
void loop()
{
digitalWrite (red, HIGH);
digitalWrite (yellow, LOW);
digitalWrite (green, LOW);
digitalWrite (red3, HIGH);
digitalWrite (yellow3, LOW);
digitalWrite (green3, LOW);
digitalWrite (red2, HIGH);
digitalWrite (yellow2, LOW);

121 | Page

delay(1000);
digitalWrite (red2, LOW);
digitalWrite (green2, HIGH);
delay(5000);
digitalWrite (green2, LOW);

//side ke 2
for(x=1; x<=5;x++)
{
digitalWrite (yellow2, LOW);
delay(500);
digitalWrite (yellow2, HIGH);
delay(500);
}
digitalWrite (red2, HIGH);
digitalWrite (yellow2, LOW);
digitalWrite (green2, LOW);
digitalWrite (red, HIGH);
digitalWrite (yellow, LOW);
digitalWrite (green, LOW);
digitalWrite (red3, HIGH);
digitalWrite (yellow3, LOW);
delay(1000);
digitalWrite (red3, LOW);
digitalWrite (green3,HIGH);
delay(5000);
digitalWrite (green3,LOW);

//side ke 3

for(x=1; x<=5;x++)
{
digitalWrite (yellow3, LOW);
delay(500);
digitalWrite (yellow3, HIGH);
delay(500);
}

digitalWrite (red3, HIGH);
digitalWrite (yellow3, LOW);
digitalWrite (green3, LOW);
digitalWrite (red2, HIGH);
digitalWrite (yellow2, LOW);
digitalWrite (green2, LOW);
digitalWrite (red, HIGH);
digitalWrite (yellow, LOW);
delay(1000);
digitalWrite (red, LOW);
digitalWrite (green,HIGH);

122 | Page

delay(5000);
digitalWrite (green,LOW);
for(x=1; x<=5;x++)
{
digitalWrite (yellow, LOW);
delay(500);
digitalWrite (yellow, HIGH);
delay(500);
}
}

9. Model Traffic Signal (auto 4sides)

Step 1 : Introduction
So now we know how to set a digital pin to be an input, we can build a project for
model traffic signals using red, yellow, and green LEDs. Every time we press the
button, the traffic signal will go to the next step in the sequence. In the UK, the
sequence of such traffic signals is red, red and amber together, green, amber, and
then back to red. As a bonus, if we hold the button down, the lights will change in
sequence by themselves with a delay between each step.

Step 2 : Components And Equipment

Arduino UNO
4x 220 ohm resistor
hook-up wires
breadboard
4x red LED
4x yellow LED
4x green LED

Step 3 : Circuit Diagram

123 | Page

Step 4 : Diagram

Step 5 : The Code

int red = 1;
int yellow = 2;
int green = 3;

int red2 = 4;
int yellow2 = 5;
int green2 = 6;

int red3 = 7;
int yellow3 = 8;
int green3 = 9;

int red4 = 10;
int yellow4 = 11;
int green4 = 12;

int x;
void setup()
{
pinMode(red, OUTPUT);
pinMode(yellow, OUTPUT);
pinMode(green, OUTPUT);
pinMode(red2, OUTPUT);
pinMode(yellow2, OUTPUT);
pinMode(green2, OUTPUT);
pinMode(red3, OUTPUT);
pinMode(yellow3, OUTPUT);
pinMode(green3, OUTPUT);
pinMode(red4, OUTPUT);
pinMode(yellow4, OUTPUT);
pinMode(green4, OUTPUT);

124 | Page

}
void loop()
{
 // side yg pertama
digitalWrite (red, HIGH);
digitalWrite (yellow, LOW);
digitalWrite (green, LOW);
digitalWrite (red3, HIGH);
digitalWrite (yellow3, LOW);
digitalWrite (green3, LOW);
digitalWrite (red4, HIGH);
digitalWrite (yellow4, LOW);
digitalWrite (green4, LOW);
digitalWrite (red2, HIGH);
digitalWrite (yellow2, LOW);
delay(1000);
digitalWrite (red2, LOW);
digitalWrite (green2, HIGH);
delay(5000);
digitalWrite (green2, LOW);
//side ke 2
for(x=1; x<=5;x++)
{
digitalWrite (yellow2, LOW);
delay(500);
digitalWrite (yellow2, HIGH);
delay(500);
}
digitalWrite (red2, HIGH);
digitalWrite (yellow2, LOW);
digitalWrite (green2, LOW);
digitalWrite (red, HIGH);
digitalWrite (yellow, LOW);
digitalWrite (green, LOW);
digitalWrite (red4, HIGH);
digitalWrite (yellow4, LOW);
digitalWrite (green4, LOW);
digitalWrite (red3, HIGH);
digitalWrite (yellow3, LOW);
delay(1000);
digitalWrite (red3, LOW);
digitalWrite (green3,HIGH);
delay(5000);
digitalWrite (green3,LOW);
//side ke 3
for(x=1; x<=5;x++)
{
digitalWrite (yellow3, LOW);
delay(500);

125 | Page

digitalWrite (yellow3, HIGH);
delay(500);
}
digitalWrite (red3, HIGH);
digitalWrite (yellow3, LOW);
digitalWrite (red4, HIGH);
delay(1000);
digitalWrite (red4, LOW);
digitalWrite (green4,HIGH);
delay(5000);
digitalWrite (green4,LOW);
//side ke 3
for(x=1; x<=5;x++)
{
digitalWrite (yellow4, LOW);
delay(500);
digitalWrite (yellow4, HIGH);
delay(500);
}
digitalWrite (red4, HIGH);
digitalWrite (yellow4, LOW);
digitalWrite (green4, LOW);
digitalWrite (red3, HIGH);
digitalWrite (yellow3, LOW);
digitalWrite (green3, LOW);
digitalWrite (red2, HIGH);
digitalWrite (yellow2, LOW);
digitalWrite (green2, LOW);
digitalWrite (red, HIGH);
digitalWrite (yellow, LOW);
delay(1000);
digitalWrite (red, LOW);
digitalWrite (green,HIGH);
delay(5000);
digitalWrite (green,LOW);
for(x=1; x<=5;x++)
{
digitalWrite (yellow, LOW);
delay(500);
digitalWrite (yellow, HIGH);
delay(500);
}
}

126 | Page

References

David, G & Dawn, G. (2012). Head First C: A Brain-Friendly Guide 1st Edition. O'Reilly Media.

Kernighan, Brian W.; Ritchie, Dennis M. (February 1978). The C Programming Language (1st ed.).

Englewood Cliffs, NJ: Prentice Hall. ISBN 0-13-110163-3.

Knuth, D. (1998). The art of computer programming Volume 2 2nd edition. In Reading MA.

McGrath,M. (2018). C Programming in easy steps, 5th Edition. In Easy Steps Limited.

Perry,G.& Miller,D. (2015). C Programming Absolute Beginner's Guide 3rd Edition. Pearson

Education.

Ritchie, Dennis M. (1993). "The Development of the C Language". History of Programming

Languages, 2nd Edition. Retrieved 2018-11-11.

Schildt, H. (2018).The Complete Reference, 4th Edition. McGraw-Hill.

 1

