
PROJECT
SOFTWARE

AND
HARDWARE

(INTERFACING)

PROJECT SOFTWARE AND HARDWARE
(INTERFACING)

CHUNG BOON CHUAN
JUNEKH EYAT ENG TIAN A/L JUAN

POLITEKNIK KOTA BHARU
POLITEKNIK IBRAHIM SULTAN

I

Published and printed by:

Electrical Engineering Department Kota Bharu Polytechnic KM24

Kok Lanas, 16450 Ketereh Kelantan in collaboration with Electrical

Engineering Department Ibrahim Sultan Polytechnic KM 10, Jalan

Kong Kong, 81700 Pasir Gudang, Johor

Project Software And Hardware (Interfacing) First Edition 2021

© 2021 Chung Boon Chuan & Junekh Eyat Eng Tian A/L Juan

All rights reserved. No part of publication may be reproduced,

stored in any form or by any means, electronic, mechanical,

photocopying, recording or otherwise without prior written

permission of the copyright holder.

B.C Chung, Junekh

Project Software And Hardware (Interfacing) For Student IPT

First Edition 2021 / B.C.Chung, Junekh

We would like to thanks Kota Bharu Polytechnic and Ibrahim

Sultan Polytechnic for giving us the opportunity to produce

this book. The book Project Software And Hardware

(Interfacing) For IPT Students was successfully published

after going through planning for a year. This book is written

and published as a guide or reference to all electrical and

electronic engineering students in polytechnics on the

production of final semester projects. This book will give

students exposure to Adriuno related projects. The Adruino

project is very popular, inexpensive and easy to learn.

Hopefully this book can be used by all lecturers and students.

Chung Boon Chuan

Electrical Engineering Department

Politeknik Kota Bharu

KM24 Kok Lanas, 16450 Ketereh

Kelantan

Junekh Eyat Eng Tian A/L Juan

Electrical Engineering Department

Politeknik Ibrahim Sultan

KM 10, Jalan Kong Kong,

81700 Pasir Gudang, Johor

IIIII

SYNOPSIS

This Software and Hardware Book was produced to

provide exposure for student learn the software and

hardware to create a projects in Electrical and Electronic

Engineering.

This book is suitable for use by students for Fundamental

Programming and final semester projects. This book

gives an idea and correct methods to to create project by

using adruino with C programming . Adruino is a popular

and user friendly boardcfor student to learn basic

software and Hardware projects.

This book has been written and compiled specifically to

facilitate students with basic knowledge related to

programming to implement projects. By using easy to

understand language, it clearly describes the steps to

produce a project.

The author hopes for comments and suggestions from
readers to improve for the next writing.

About Writer

Chung Boon Chuan

The author was born in 1972 in Tanah Merah,
Kelantan. Has an academic qualification in Electrical
Engineering First Degree (UTM, 97) and Bachelor of
Education (UTM, 98). Started his career as a lecturer at
Seberang Prai Polytechnic in August 1999 and
currently works at Kota Bharu Polytechnic.

VIV

Junekh Eyat Eng Tian A/L Juan

The author was born in 1978 in Wakaf Bharu, Kelantan.
He completed his Diploma in Electrical Engineering at Kota
Bharu Polytechnic (PKB) in 2000. He then continued his
bachelor's degree at Tun Hussein Onn University College
(KUiTTHO) in 2002. He futher his studies in Master's
Degree in Technical and Vocational Education at Universiti
Tun Hussein Onn (UTHM) in 2005. Started his career as a
lecturer in the Electrical Engineering Department in 2007
at Kota Bharu Polytechnic until 2016. He currently works
at Ibrahim Sultan Polytechnic (PIS). Apart from that, he is
also the project supervisor of Electrical Engineering
students.

VIV

CONTENTS CONTENTS

TOPIC
PAGE

NUMBER

1. Introduction To Adruino
1.1 Introduction
1.2 LED Blinking with Adruino Uno
1.3 LED DICE
1.4 Multiple Blink LED
1.5 Traffic Signal Model
1.6 Traffic Signal Model (Automatic)
1.7 Traffic Signal Model (Automatic 2 Traffic Light)
1.8 Model Traffic Signal (auto 3 traffic light)
1.9 Traffic Signal Model (Automatic 4 Sides)

2. Intermediate Projects
2.1 Obstacle Sensor Using Adruino And HCSR04
2.2 Seven segment Display
2.3 Infrared Barrier Module
2.4 Adruino Infrared Collision Avoidance & Motor
2.5 Adruino L293D DC motors control
2.6 Adruino HC-06 Serial Port Bluetooth Module
2.7 Adruino L293D DC motors control (2 Motor)
2.8 Adruino L298D ROBOT CAR

3. Advance Projects
3.1 Pin selector
3.2 Data Mapping
3.3 Split/Merge
3.4 Send On Release & Color Gradient
3.5 IOT (Blynk)
3.6 Installing Blynk Library

1
3
5

10
15
19
24
28
35

43
50
57
63
68
72
80
86

91
93
94
96
97
99

TOPIC
PAGE

NUMBER

3.7 Started With The Blynk App
3.8 Adruino over USB (no shield)
3.9 Adruino/USB/simple Time
3.10 Adruino ESP8266 Remote Serial Port WIFI

Transceiver Wireless Module
3.11 LED Control
3.12 Slider
3.13 Joystick
3.14 Button
3.15 Timer
3.16 zeRGBa
3.17 Step H
3.18 Step V
3.19 Labelled Value
3.20 NodeMCU Esp8266 12E
3.21 Getting to Know
3.22 Simple Led Control With Blynk and NodeMCU

Esp8266 12E

101
104
108
110

118
122
124
126
128
130
133
135
137
139
141
143

21

1. Introduction To Adruino
1.1 Introduction

a. Adruino is a tool for making computers that can sense and

control more of the physical world than your desktop

computer. It's an open-source physical computing platform

based on a simple microcontroller board, and a

development environment for writing software for the

board.

b. Adruino can be used to develop interactive objects, taking

inputs from a variety of switches or sensors, and controlling

a variety of lights, motors, and otherphysical outputs.

c. Adruino projects can be stand-alone, or they can be

communicate with software running on your computer (e.g.

Flash, Processing, MaxMSP.) The boards can be assembled

by hand or purchased preassembled; the open-source IDE

can be downloaded for free.

d. The Adruino programming language is an implementation

of Wiring, a similar physical computing platform, which is

based on the Processing multimedia programming

environment.

Figure 1.1 : Adruino Uno open-source
microcontroller board

43

1. Introduction to Adruino

1.2 LED Blinking with Adruino Uno

// The setup function runs when you press reset or power the
board
void setup()
{
// initialize digital pin 0 as an output.

pinMode(0, OUTPUT);
}

// the loop function runs over and over again forever
void loop()
{
digitalWrite(0, HIGH); // turn the LED on (HIGH is the voltage
level)
delay(500); // wait for a second
digitalWrite(0, LOW); // turn the LED off by making the voltage
LOW
delay(500); // wait for a second
}

Figure 1.2 : Hardware Connection for LED
Blinking with Adruino Uno

65

1. Introduction to Adruino

1.3 LED DICE

a. Hardware Connection

FirstlyLED is arangge like the shape of the dice. Then

connect the LED1 to LED7 to digital port-2 until port-8. Connect

a pull-up switch to control the operation of the LED dice which is

connected to digital port 11. Every LEDs are connected with an

1K resistor to prevent over current LED which will make the LED

damage.

//Defining LED Pins
int ledPins[7] = {2, 3, 4, 5, 6, 7, 8};
int dicePatterns[7][7] = {
{0, 0, 0, 0, 0, 0, 1}, // 1
{0, 0, 1, 1, 0, 0, 0}, // 2
{0, 0, 1, 1, 0, 0, 1}, // 3
{1, 0, 1, 1, 0, 1, 0}, // 4
{1, 0, 1, 1, 0, 1, 1}, // 5
{1, 1, 1, 1, 1, 1, 0}, // 6
{1, 1, 1, 1, 1, 1, 1}, // 7
{0, 0, 0, 0, 0, 0, 0} // BLANK
};

int switchPin =11; //Defining button pin
int blank = 7;
void setup()
{
for (int i = 0; i < 8; i++)
{
pinMode(ledPins[i], OUTPUT);
digitalWrite(ledPins[i], LOW);
}

randomSeed(analogRead(0));
}
void loop()
{

if (digitalRead(switchPin))
{
rollTheDice();
}
delay(100);
}
void rollTheDice()
{

87

int result = 0;
int lengthOfRoll = random(15, 25);
for (int i = 0; i < lengthOfRoll; i++)
{
result = random(0, 6); // result will be 0 to 5 not 1 to 6
show(result);
delay(50 + i * 10);
}
for (int j = 0; j < 3; j++)
{
show(blank);
delay(500);
show(result);
delay(500);
}
}
void show(int result)
{
for (int i = 0; i < 8; i++)
{
digitalWrite(ledPins[i], dicePatterns[result][i]);
}
}

Figure 1.3.2 : Schematic Diagram For LED Dice

109

Figure 1.3.1 : Hardware Connection for LED
Dice with Adruino Uno

1. Introduction to Adruino

1.4 Multiple Blink LED

In this lesson, it shown the first external circuit and control it
from Adruino.It use digitalWrite command to turn LED on and
off. The components require for this project are :

8 x LED
8 x 1KΩ Resistor
Adruino
1 x USB cable
Breadboard
Jumper Wires

1211

Figure 1.4.1 : Hardware Connection For Multiple
Blink LED Project

int led1=1;
int led2=2;
int led3=3;
int led4=4;
int led5=5;
int led6=6;
int led7=7;
int led8=8;

void setup() {
pinMode(led1,OUTPUT);
pinMode(led2,OUTPUT);
pinMode(led3,OUTPUT);
pinMode(led4,OUTPUT);
pinMode(led5,OUTPUT);
pinMode(led6,OUTPUT);
pinMode(led7,OUTPUT);
pinMode(led8,OUTPUT);
}

void loop() {

digitalWrite (led1, HIGH);
delay (500);
digitalWrite (led1, LOW);
delay (500);
digitalWrite (led2, HIGH);
delay (500);
digitalWrite (led2, LOW);

1413

delay (500);
digitalWrite (led3, HIGH);
delay (500);
digitalWrite (led3, LOW);
delay (500);
digitalWrite (led4, HIGH);
delay (500);
digitalWrite (led4, LOW);
delay (500);
digitalWrite (led5, HIGH);
delay (500);
digitalWrite (led5, LOW);
delay (500);

digitalWrite (led6, HIGH);
delay (500);
digitalWrite (led6, LOW);
delay (500);
digitalWrite (led7, HIGH);
delay (500);
digitalWrite (led7, LOW);
delay (500);
digitalWrite (led8, HIGH);
delay (500);
digitalWrite (led8, LOW);
delay (500);
}

Figure 1.4.2 : Output For Multiple Blink LED
Project

1615

1. Introduction to Adruino

1.5 Traffic Signal Model

This project is design for traffic signals model using red, yellow,
and green LEDs. Every time we press the button, the traffic
signal will go to the next step in the sequence. The sequence of
the traffic signals is red, red and amber together, green, amber,
and then back to red. There a button connected. If the button is
pressed, the lights will change in sequence with a delay between
each step. The components require for this project are :

Adruino UNO
4x 220 ohm resistor
hook-up wires
breadboard
red LED
yellow LED
green LED
1x push switch

Figure 1.5 : Hardware Connection For Traffic
Signal Model

R1
(220Ω)

S
1

R
1

(2
2

0
Ω

)

R
1

(2
2

0
Ω

)

R
1

(2
2

0
Ω

)

R e d Y
e

ll
o

w
G

re e
n

1817

int redPin = 2;
int yellowPin = 3;
int greenPin = 4;
int buttonPin = 5;
int state = 0;
void setup()
{
pinMode(redPin, OUTPUT);
pinMode(yellowPin, OUTPUT);
pinMode(greenPin, OUTPUT);
pinMode(buttonPin, INPUT);
}
void loop()
{
if (digitalRead(buttonPin))
{
if (state == 0)
{
setLights(HIGH, LOW, LOW);
state = 1;
}
else if (state == 1)
{
setLights(LOW, HIGH, LOW);
state = 2;
}

else if (state == 2)
{
setLights(LOW, LOW, HIGH);
state = 3;
}
else if (state == 3)

{
setLights(LOW, HIGH, LOW);
state = 0;
}
delay(1000);
}
}
void setLights(int red, int yellow,
int green)
{
digitalWrite(redPin, red);
digitalWrite(yellowPin, yellow);
digitalWrite(greenPin, green);
}

2019

1. Introduction to Adruino

1.6 Traffic Signal Model (Automatic)

This project is design for automatic Traffic Signals Model using
red, yellow, and green LEDs. The sequence of the traffic signals is
red, red and amber together, green, amber, and then back to
red. The components require for this project are :

Adruino UNO
Adruino UNO
3x 220 ohm resistor
hook-up wires
breadboard
red LED
yellow LED
green LED

Figure 1.6.1 : Hardware Connection For Traffic
Signal Model (Automatic)

2221
Figure 1.6.2 : Output For Traffic Signal
Model (Automatic)

int red = 2;
int yellow = 3;
int green = 4;
int x;
void setup()
{
pinMode(red, OUTPUT);
pinMode(yellow, OUTPUT);
pinMode(green, OUTPUT);
}
void loop()
{
digitalWrite (red, HIGH);
digitalWrite (yellow, LOW);
digitalWrite (green, LOW);
delay(500);
digitalWrite (red, LOW);
for(x=1; x<=5;x++)

{
digitalWrite (yellow, LOW);
delay(500);
digitalWrite (yellow, HIGH);
delay(500);
}
digitalWrite (yellow, LOW);
digitalWrite (green, HIGH);
delay(500);
digitalWrite (green, LOW);

2423

for(x=1; x<=4;x++)
{
digitalWrite (yellow, LOW);
delay(500);
digitalWrite (yellow, HIGH);
delay(500);
}
}

1. Introduction to Adruino
1.7 Traffic Signal Model (Automatic 2
Traffic Light)

This project Traffic Signals Model automatically using 2 Traffic
Light. It consists of red, yellow, and green LEDs. The sequence of
the traffic signals is red, red and amber together, green, amber,
and then back to red. The components require for this project
are :

Adruino UNO
2x 220 ohm resistor
hook-up wires
breadboard
2x red LED
2x yellow LED
2x green LED

2625
Figure 1.7 : Hardware Connection For Traffic
Signal Model (Automatic 2 Traffic Light)

int red = 2;
int yellow = 3;
int green = 4;

int red2 = 5;
int yellow2 = 6;
int green2 = 7;

int x;
void setup()
{
pinMode(red, OUTPUT);
pinMode(yellow, OUTPUT);
pinMode(green, OUTPUT);
pinMode(red2, OUTPUT);
pinMode(yellow2, OUTPUT);
pinMode(green2, OUTPUT);

}

void loop()
{
digitalWrite (red, HIGH);
digitalWrite (yellow, LOW);
digitalWrite (green, LOW);

digitalWrite (red2, HIGH);
digitalWrite (yellow2, LOW);
delay(1000);
digitalWrite (red2, LOW);
digitalWrite (green2, HIGH);

2827

delay(5000);
digitalWrite (green2, LOW);

for(x=1; x<=5;x++)
{
digitalWrite (yellow2, LOW);
delay(500);
digitalWrite (yellow2, HIGH);
delay(500);
}

digitalWrite (red2, HIGH);
digitalWrite (yellow2, LOW);
digitalWrite (green2, LOW);

digitalWrite (red, HIGH);
digitalWrite (yellow, LOW);
delay(1000);
digitalWrite (red, LOW);
digitalWrite (green,HIGH);

delay(5000);
digitalWrite (green,LOW);

for(x=1; x<=5;x++)
{
digitalWrite (yellow, LOW);
delay(500);
digitalWrite (yellow, HIGH);
delay(500);
}
}

1. Introduction to Adruino
1.8 Model Traffic Signal (auto 3 traffic
light)

This project Traffic Signals Model automatically using 3 Traffic
Light. It consists of red, yellow, and green LEDs. The sequence of
the traffic signals is red, red and amber together, green, amber,
and then back to red. The components require for this project
are :

Adruino UNO
Adruino UNO
3x 220 ohm resistor
hook-up wires
breadboard
3x red LED
3x yellow LED
3x green LED

3029

Figure 1.8.1 : Hardware Connection For Traffic
Signal Model (Automatic 3 Traffic Light)

Figure 1.8.2 : OutputFor Traffic Signal Model
(Automatic 3 Traffic Light)

3231

int red = 1;
int yellow = 2;
int green = 3;

int red2 = 4;
int yellow2 = 5;
int green2 = 6;

int red3 = 7;
int yellow3 = 8;
int green3 = 9;

int x;
void setup()
{
pinMode(red, OUTPUT);
pinMode(yellow, OUTPUT);
pinMode(green, OUTPUT);
pinMode(red2, OUTPUT);
pinMode(yellow2, OUTPUT);
pinMode(green2, OUTPUT);
pinMode(red3, OUTPUT);
pinMode(yellow3, OUTPUT);
pinMode(green3, OUTPUT);
}
void loop()
{
digitalWrite (red, HIGH);
digitalWrite (yellow, LOW);
digitalWrite (green, LOW);

digitalWrite (red3, HIGH);
digitalWrite (yellow3, LOW);
digitalWrite (green3, LOW);

digitalWrite (red2, HIGH);
digitalWrite (yellow2, LOW);
delay(1000);
digitalWrite (red2, LOW);
digitalWrite (green2, HIGH);

delay(5000);
digitalWrite (green2, LOW);

//side ke 2
for(x=1; x<=5;x++)
{
digitalWrite (yellow2, LOW);
delay(500);
digitalWrite (yellow2, HIGH);
delay(500);
}

digitalWrite (red2, HIGH);
digitalWrite (yellow2, LOW);
digitalWrite (green2, LOW);

digitalWrite (red, HIGH);
digitalWrite (yellow, LOW);
digitalWrite (green, LOW);

digitalWrite (red3, HIGH);
digitalWrite (yellow3, LOW);
delay(1000);
digitalWrite (red3, LOW);
digitalWrite (green3,HIGH);

3433

delay(5000);

digitalWrite (green3,LOW);

//side ke 3

for(x=1; x<=5;x++)
{
digitalWrite (yellow3, LOW);
delay(500);
digitalWrite (yellow3, HIGH);
delay(500);
}

digitalWrite (red3, HIGH);
digitalWrite (yellow3, LOW);
digitalWrite (green3, LOW);

digitalWrite (red2, HIGH);
digitalWrite (yellow2, LOW);
digitalWrite (green2, LOW);

digitalWrite (red, HIGH);
digitalWrite (yellow, LOW);
delay(1000);
digitalWrite (red, LOW);
digitalWrite (green,HIGH);

delay(5000);

digitalWrite (green,LOW);

for(x=1; x<=5;x++)
{
digitalWrite (yellow, LOW);
delay(500);
digitalWrite (yellow, HIGH);
delay(500);
}

}

3635

1. Introduction to Adruino
1.9 Traffic Signal Model (Automatic 4
Sides)

This project is design for Automatic 4 Sides Traffic Signals Model
using red, yellow, and green LEDs. The sequence of the traffic
signals is red, red and amber together, green, amber, and then
back to red. The components require for this project are :

Adruino UNO
4x 220 ohm resistor
hook-up wires
breadboard
4x red LED
4x yellow LED
4x green LED

Figure 1.9.1 : Hardware Connection For Traffic
Signal Model (Automatic 4 Sides)

3837

Figure 1.9.2 : Output For Traffic Signal
Model (Automatic 4 Sides)

int red = 1;
int yellow = 2;
int green = 3;

int red2 = 4;
int yellow2 = 5;
int green2 = 6;

int red3 = 7;
int yellow3 = 8;
int green3 = 9;

int red4 = 10;
int yellow4 = 11;
int green4 = 12;

int x;
void setup()
{
pinMode(red, OUTPUT);
pinMode(yellow, OUTPUT);
pinMode(green, OUTPUT);
pinMode(red2, OUTPUT);
pinMode(yellow2, OUTPUT);
pinMode(green2, OUTPUT);

pinMode(red3, OUTPUT);
pinMode(yellow3, OUTPUT);
pinMode(green3, OUTPUT);

pinMode(red4, OUTPUT);
pinMode(yellow4, OUTPUT);
pinMode(green4, OUTPUT);
}

4039

void loop()
{

// side yg pertama
digitalWrite (red, HIGH);
digitalWrite (yellow, LOW);
digitalWrite (green, LOW);

digitalWrite (red3, HIGH);
digitalWrite (yellow3, LOW);
digitalWrite (green3, LOW);

digitalWrite (red4, HIGH);
digitalWrite (yellow4, LOW);
digitalWrite (green4, LOW);

digitalWrite (red2, HIGH);
digitalWrite (yellow2, LOW);
delay(1000);
digitalWrite (red2, LOW);
digitalWrite (green2, HIGH);

delay(5000);
digitalWrite (green2, LOW);

//side ke 2
for(x=1; x<=5;x++)
{
digitalWrite (yellow2, LOW);
delay(500);
digitalWrite (yellow2, HIGH);
delay(500);
}

digitalWrite (red2, HIGH);
digitalWrite (yellow2, LOW);
digitalWrite (green2, LOW);

digitalWrite (red, HIGH);
digitalWrite (yellow, LOW);
digitalWrite (green, LOW);

digitalWrite (red4, HIGH);
digitalWrite (yellow4, LOW);
digitalWrite (green4, LOW);

digitalWrite (red3, HIGH);
digitalWrite (yellow3, LOW);
delay(1000);
digitalWrite (red3, LOW);
digitalWrite (green3,HIGH);

delay(5000);

digitalWrite (green3,LOW);

//side ke 3

for(x=1; x<=5;x++)
{
digitalWrite (yellow3, LOW);
delay(500);
digitalWrite (yellow3, HIGH);
delay(500);
}

4241

digitalWrite (red3, HIGH);
digitalWrite (yellow3, LOW);
digitalWrite (red4, HIGH);
delay(1000);
digitalWrite (red4, LOW);
digitalWrite (green4,HIGH);

delay(5000);

digitalWrite (green4,LOW);

//side ke 3

for(x=1; x<=5;x++)
{
digitalWrite (yellow4, LOW);
delay(500);
digitalWrite (yellow4, HIGH);
delay(500);
}

digitalWrite (red4, HIGH);
digitalWrite (yellow4, LOW);
digitalWrite (green4, LOW);

digitalWrite (red3, HIGH);
digitalWrite (yellow3, LOW);
digitalWrite (green3, LOW);

digitalWrite (red2, HIGH);
digitalWrite (yellow2, LOW);
digitalWrite (green2, LOW);

digitalWrite (red, HIGH);
digitalWrite (yellow, LOW);
delay(1000);
digitalWrite (red, LOW);
digitalWrite (green,HIGH);

delay(5000);
digitalWrite (green,LOW);
for(x=1; x<=5;x++)
{
digitalWrite (yellow, LOW);
delay(500);
digitalWrite (yellow, HIGH);
delay(500);
}

}

4443

2. Intermediate Projects
2.1 Obstacle Sensor Using Adruino And
HCSR04

The HC-SRO4 is an ultrasonic sensor which uses sonar to detect
objects at a distance of 2 cm to 4 meters. This sensor is widely
used in robotics to build robots that move and should divert or
avoid obstacles.

The ultrasonic range finder can be used in several ways for range
detection and robotics projects. It is able to detect the distance
to obstacles are in front of a mobile robot, allowing a maneuver
movements before a collision occurs.
Adruino and ultrasonic range finder can give user full control,
allowing the user to schedule the most convenient way for for
moving robots.

This project uses Adruino UNO R3 and one ultrasonic sensor HC-
SRO4. The sensor HC-SRO4 is easy to find and Cheap. The
components require for this project are :

Adruino UNO
220 ohm resistor
Jumpers wires
breadboard
HC- SR04;
Three LEDs of different colors;

Figure 2.1.1 : Hardware Connection For
Obstacle Sensor Using Adruino And
HCSR04

4645

int trigPin = 7; //Trig - green Jumper
int echoPin = 6; //Echo - yellow Jumper
long cm,duration;
int ledgreen=10;
int ledyellow=9;
int ledred=8;
int ledgreen2=13;
int ledyellow2=12;
int ledred2=11;

void setup() {
//Serial Port begin
Serial.begin (9600);
//Define inputs and outputs
pinMode(trigPin, OUTPUT);
pinMode(echoPin, INPUT);
pinMode(ledyellow, OUTPUT);
pinMode(ledgreen, OUTPUT);
pinMode(ledred, OUTPUT);
pinMode(ledyellow2, OUTPUT);
pinMode(ledgreen2, OUTPUT);
pinMode(ledred2, OUTPUT);

}

Figure 2.1.2 : Output For Obstacle Sensor
Using Adruino And HCSR04

4847

void loop()
{

// The sensor is triggered by a HIGH pulse of 10 or more
microseconds.

// Give a short LOW pulse beforehand to ensure a clean HIGH
pulse:

digitalWrite(trigPin, LOW);
delayMicroseconds(5);
digitalWrite(trigPin, HIGH);
delayMicroseconds(10);
digitalWrite(trigPin, LOW);
pinMode(echoPin, INPUT);
duration = pulseIn(echoPin, HIGH);

cm = (duration/2) / 29.1;

if (cm > 30) {
digitalWrite(ledgreen,LOW);
digitalWrite(ledyellow,LOW);
digitalWrite(ledred,LOW);
digitalWrite(ledgreen2,LOW);
digitalWrite(ledyellow2,LOW);
digitalWrite(ledred2,LOW);
delay(500);
}

else if (cm > 25) {
digitalWrite(ledgreen2,HIGH);
digitalWrite(ledyellow2,LOW);
digitalWrite(ledred2,LOW);
digitalWrite(ledgreen,LOW);
digitalWrite(ledyellow,LOW);
digitalWrite(ledred,LOW);
delay(500);

}

else if (cm >20) {
digitalWrite(ledgreen2,LOW);
digitalWrite(ledyellow2,HIGH);
digitalWrite(ledred2,LOW);
digitalWrite(ledgreen,LOW);
digitalWrite(ledyellow,LOW);
digitalWrite(ledred,LOW);
delay(500);
}

else if (cm > 15) {
digitalWrite(ledgreen2,LOW);
digitalWrite(ledyellow2,LOW);
digitalWrite(ledred2,HIGH);
digitalWrite(ledgreen,LOW);
digitalWrite(ledyellow,LOW);
digitalWrite(ledred,LOW);
delay(500);
}

5049

else if (cm > 10) {
digitalWrite(ledgreen2,LOW);
digitalWrite(ledyellow2,LOW);
digitalWrite(ledred2,LOW);
digitalWrite(ledgreen,HIGH);
digitalWrite(ledyellow,LOW);
digitalWrite(ledred,LOW);
delay(500);

}

else if (cm >5) {
digitalWrite(ledgreen2,LOW);
digitalWrite(ledyellow2,LOW);
digitalWrite(ledred2,LOW);
digitalWrite(ledgreen,LOW);
digitalWrite(ledyellow,HIGH);
digitalWrite(ledred,LOW);
delay(500);
}

else {
digitalWrite(ledgreen2,LOW);
digitalWrite(ledyellow2,LOW);
digitalWrite(ledred2,LOW);
digitalWrite(ledgreen,LOW);
digitalWrite(ledyellow,LOW);
digitalWrite(ledred,HIGH);
delay(500);
}
}

2. Intermediate Projects
2.2 Seven segment Display

In this circuit and code the seven segment display is controlled by
the Adruino. The pins are initialized to output by using the ddrd
command(register operations). And, the pins are switched on and
off by using the portd command.

In this project, 7 segment can display any character desired by the
user. A 7 Segment LED Display can be drive by an Adruino. The user
can program the circuit so that it displayed numerals 0-9 a second
apart from each other. This project simply show go over (again) how
it display any character (which can be displayed) on a 7 segment LED
display.

To do thisuser should go over the internal makeup of a 7 segment
LED display. The display is a device that is made up of 8 individual
LEDs, including the decimal point at the bottom. Depending on
which LED is lit decides what type of character will be shown.
As an example, look at the numbers shown below.
To understand how this program works, let's first look at the
schematic makeup of a 7 segment LED display.

5251

As an example, look at the numbers shown below. To understand
how this program works, the schematic makeup of a 7 segment LED
display.

The LED display, again, is made up of 8 individual LEDs, as shown
above. The LEDs go in order of the alphabetical characters which you
see. From first to last, the LEDs from 1-8 are a, b, c, d, e, f, g.
The decimal point would be the last pin.
To create an A, we would have to light LEDs, a,b,c,e,f,g. Thus to
create it in code, it would be represented by B11101110.

Figure 2.2.1 : 7 Segmen Display
Schematic Diagram

The full list of all the alphabetical characters with their
corresponding code we can display on the segment display is shown
in the table below.

Figure 2.2.2 : 7 Segmen Display
Alphabetical characters Reprensentation In
Code

Alphabetical Character Representation in Code

A B11101110

b B00111110

C B10011100

c B00011010

d B01111010

E B10011110

F B10001110

H B01101110

h B00101110

L B00011100

l B01100000

O B11111100

o B00111010

P B11001110

S B10110110

5453

The components require for this project are :

Adruino UNO
220 ohm resistor
Jumper wires
breadboard
Common Cathode 7 Segment LED Display

Figure 2.2.3 : Hardware Connection For 7
Segment Display

5655 Figure 2.2.3 : Output For 7 Segment Display

int mynumbers[] = {
// B00000000, //
B01111111, // 0
B00001101, // 1
B10110111, // 2
B10011111, // 3
B11001101, // 4
B11011011, // 5
B11111011, // 6
B00001111, // 7
B11111111, // 8
B11011111, // 9

};
void setup()
{

}
void loop()
{
int i;
DDRD = B11111111;
for(i=0; i< 10; i++)

{
PORTD = mynumbers[i];

delay(1000);
}
}

5857

2. Intermediate Projects
2.3 Infrared Barrier Module

The sensor module light is adaptable to the environment. It has
a pair of infrared transmitting and receiving tube. Tube infrared
emit a certain frequency, when detecting direction meet with
obstacles (reflecting surface) it will reflected infrared receiving
tube. After the comparator circuit processing, green indicator
will light up, at the same time signal output interface to output
digital signal (a low level signal). The sensor detection range can
be through the potentiometer to adjust and have small
interference. It is easy to assemble and easy to use. The
applications of the Infrared Barrier Module are :

i) Robot obstacle avoidance
ii) Obstacle avoidance car
iii) Line count
iv) Black and white line tracking

Technical Specifications
Working voltage: 3.3−5 V
Effective range: 2−30 cm (depends on object reflectivity)
Potentiometer adjustment direction: clockwise (detection
distance increase), counterclockwise (detection distance
decrease)
Dimensions: 47mm L × 19mm W x 80mm H
Weight: 1.66 oz (47 g)

Connecting mode: VCC-VCC, GND-GND, OUT-IO
Module interface specification:
1. VCC port can connect to voltage between 3.3 V to 5 V converters
2. Ground port can connect to external GND
3. Output port can connect to IO port directly or can drive 5 V relay

Figure 2.3.1 : Hardware Connection For Infrared
Barrier Module

6059

When power on, the red power indicates light lit. When the module
detects obstacles in front of the signal, the green indicator on the
circuit board light level and at the same time the OUT port output
have low level signal, the detection module from 2~30cm at 35°
detection angle. Sensors is active infrared reflection detection,
therefore the reflectivity and shape of the target are the key of the
detection range. White is a minimum detection range while black is
maximum detection range. Small area of the object distance will
result large distance. The components require for this project are :

Adruino UNO
220 ohm resistor
hook-up wires
breadboard
SN-IRB-MOD: Infrared Barrier Module

Figure 2.3.2 : Output For Infrared Barrier
Module

6261

The Code (on-off One LED)

int LED=13; // untuk LED pin 13
int isObstaclePin = 7; // untuk pin input bagi infrared
int isObstacle = HIGH; // infrared high

void setup() {

pinMode(LED,OUTPUT);
pinMode(isObstaclePin,INPUT);
Serial.begin(9600);
}

void loop() {

isObstacle = digitalRead (isObstaclePin);
if (isObstacle == HIGH)
{

Serial.println("OBSTACLE!!, ABSTACLE!!");
digitalWrite(LED,HIGH);

}
else

{
Serial.println("clear");
digitalWrite(LED,LOW);

}
delay(300);
}

The Code (on-off TWO LED)

int LED=13; // untuk LED pin 13
int LED2=12;
int isObstaclePin = 7; // untuk pin input bagi infrared
int isObstacle = HIGH; // infrared high

void setup() {

pinMode(LED,OUTPUT);
pinMode(LED2,OUTPUT);
pinMode(isObstaclePin,INPUT);
Serial.begin(9600);
}

void loop() {

isObstacle = digitalRead (isObstaclePin);
if (isObstacle == HIGH)
{

Serial.println("OBSTACLE!!, ABSTACLE!!"); //paparan pada screen
digitalWrite(LED,HIGH);
digitalWrite(LED2,LOW);

}
else

{
Serial.println("clear"); // paparan pada screen
digitalWrite(LED,LOW);
digitalWrite(LED2,HIGH);

}
delay(300);

6463

2. Intermediate Projects
2.4 Adruino Infrared Collision Avoidance &
Motor

This project is controlling a spinning motor. This requires the use
of a transistor, which can switch a larger amount of current than
the RedBoard or Adruino Uno R3. When using a transistor the
maximum specs are high enough for the power. The transistor
that are using for this circuit is rated at 40V max and 200
milliamps max, which is suitable for toy motor. When the motor
is spinning and suddenly turned off, the magnetic field inside it
collapses, generating a voltage spike. This can damage the
transistor. To prevent this, we use a “flyback diode”, which
diverts the voltage spike around the transistor. The components
require for this project are :

1x Breadboard
1x RedBoard or Adruino Uno
1x Motor
1x 330Ω Resistor
1x NPN transistor
1x Diode 1N4148
6x Jumper Wires

Figure 2.4.1 : Hardware Connection For Adruino
Infrared Collision Avoidance & Motor

6665

Figure 2.4.2 : Output For Adruino Infrared
Collision Avoidance & Motor

An H-bridge is a transistor-based circuit capable of driving motors
both clockwise and counter-clockwise. It’s an incredibly popular
circuit – the driving force behind countless robots that must be able
to move both forward and backward. Fundamentally, an H-bridge is a
combination of four transistors with two inputs lines and two
outputs. There’s usually quite a bit more to a well-designed H-bridge
including flyback diodes, base resistors and Schmidt triggers. If both
inputs are the same voltage, the outputs to the motor will be the
same voltage, and the motor won’t be able to spin. But if the two
inputs are opposite, the motor will spin in one direction or the other.

Figure 2.4.3 : H-Brige Connection For
Adruino Infrared Collision Avoidance &
Motor

6867

int LED=12; //to motor
int isObstaclePin = 7; // untuk pin input bagi infrared
int isObstacle = HIGH; // infrared high

void setup() {

pinMode(LED,OUTPUT);
pinMode(isObstaclePin,INPUT);
Serial.begin(9600);
}

void loop() {

isObstacle = digitalRead (isObstaclePin);
if (isObstacle == HIGH)
{

Serial.println("OBSTACLE!!, ABSTACLE!!"); //paparan pada
screen

digitalWrite(LED,HIGH);
}
else

{
Serial.println("clear"); // paparan pada screen
digitalWrite(LED,LOW);

}
delay(300);
}

2. Intermediate Projects
2.5 Adruino L293D DC motors control

The L293D Chip is a Dual H-Bridge Motor Driver for DC or Step
motors. It can handle two Motors or one step motor. It can
power motors until 36V and 600mA of steady current with Max
of 1.2A. The chip is easy to use and takes little space. This
project will use to power 1 or 2 DC Motors. The components
require for this project are :

L293D chip
Adruino (I’m using UNO)
2x DC Motors
4x AA batteries and holder

7069

Figure 2.5.1 : Hardware Connection For
Adruino L293D DC motors control

//Testing the DC Motors with
// L293D
//Define Pins

//Motor A
int enableA = 5;
int MotorA1 = 6;
int MotorA2 = 7;
int isObstaclePin = 8; // untuk pin input bagi infrared
int isObstacle = HIGH; // infrared high
void setup() {

Serial.begin (9600);
//configure pin modes
pinMode (enableA, OUTPUT);
pinMode (MotorA1, OUTPUT);
pinMode (MotorA2, OUTPUT);
pinMode(isObstaclePin,INPUT);
}

void loop() {
isObstacle = digitalRead (isObstaclePin);
if (isObstacle == HIGH)
{
Serial.println ("Enabling Motors");

digitalWrite (enableA, HIGH);
delay (500);
//do something
Serial.println ("Motion Forward");

digitalWrite (MotorA1, LOW);
digitalWrite (MotorA2, HIGH);

}

7271

else
{
//reverse
delay(500);
Serial.println ("Enabling Motors");

digitalWrite (enableA, HIGH);
digitalWrite (MotorA1,HIGH);
digitalWrite (MotorA2,LOW);

}
}

2. Intermediate Projects
2.6 Adruino HC-06 Serial Port Bluetooth
Module

The HC-06 is used to add Bluetooth functionality to project
devices & to replace serial port communication. The features for
the Adruino HC-06 Serial Port Bluetooth Module are:

Operating voltage: 3.6 to 6Vdc.
Operating current: 30mA.
Communication distance: 10 meters.
Working mode: slave.
Passcode: 1234.
Full-duplex serial interface.
Communication format: Only supports 8 data bits, 1 stop bit, no
parity.
Default baud rate: 9600 bps.
Dimension: 16 x 38 mm.
Weight: 5g.

Status LED indicator:
i) LED flashes = Bluetooth is not connected.
ii) LED on = Bluetooth is connected.

Pinout:
i) RXD = Receive data (In) - Connect this pin to Adruino board's

TXD pin.
ii) TXD = Transmit data (Out) - Connect this pin to Adruino

board's RXD pin.
iii) GND = Ground
iv) VCC = 3.6 to 6V

7473

The components require for this project are :

L293D chip
Adruino (I’m using UNO)
3x 220 ohm resistor
hook-up wires
breadboard
red LED
yellow LED
green LED
HC-06 Serial Port Bluetooth Module

Figure 2.6.1 : Adruino HC-06 Serial Port Bluetooth
Module

7675

Figure 2.6.2 : Hardware Connection For
Adruino HC-06 Serial Port Bluetooth Module

#include <SoftwareSerial.h>
SoftwareSerial BT(10, 11);
// creates a "virtual" serial port/UART
// connect BT module TX to D10
// connect BT module RX to D11
// connect BT Vcc to 5V, GND to GND
void setup()
{

// set digital pin to control as an output
pinMode(7, OUTPUT);
pinMode(6, OUTPUT);
pinMode(5, OUTPUT);
// set the data rate for the SoftwareSerial port
BT.begin(9600);
// Send test message to other device
BT.println("Hello from Adruino");

}
char a; // stores incoming character from other device
void loop()
{

if (BT.available())
// if text arrived in from BT serial...
{

a=(BT.read());
if (a=='1')
{
digitalWrite(7, HIGH);
BT.println("LED on");

}
if (a=='2')
{
digitalWrite(7, LOW);
BT.println("LED off");

}

7877

if (a=='3')
{
digitalWrite(6, HIGH);
BT.println("LED on");

}

if (a=='4')
{
digitalWrite(6, LOW);
BT.println("LED off");

}

if (a=='5')
{
digitalWrite(5, HIGH);
BT.println("LED on");

}
if (a=='6')
{
digitalWrite(5, LOW);
BT.println("LED off");

}

if (a=='?')
{
BT.println("Send '1' to turn LED on");
BT.println("Send '2' to turn LED on");

}
// you can add more "if" statements with other characters to add

more commands
}

}

Figure 2.6.3 : Application Bluetooth From Play
Store

8079

Figure 2.6.4 : Output For Adruino HC-06 Serial
Port Bluetooth Module

2. Intermediate Projects
2.7 Adruino L293D DC motors control (2
Motor)

The L293D Chip is a Dual H-Bridge Motor Driver for DC or Step
motors. It can handle two Motors or one step motor. It can power
motors until 36V and 600mA of steady current – Max of 1.2A. The
chip is easy to use and takes little space. This project will control 2 DC
Motors. The components require for this project are :

L293D chip
Adruino (I’m using UNO)
2x DC Motors
4x AA batteries and holder

8281

Figure 2.7.1 : Hardware Connection For
Adruino L293D DC motors control (2 Motor)

Figure 2.7.2 : Output For Adruino L293D DC
motors control (2 Motor)

8483

/**
* Bruno Santos, 2013
* feiticeir0@whatgeek.com.pt
* Small code to test DC motors - 2x with a L298 Dual H-Bridge Motor
Driver
* Free to share
**/

//Testing the DC Motors with
// L293D

//Define Pins
//Motor A
int enableA = 5;
int MotorA1 = 6;
int MotorA2 = 7;
int isObstaclePin = 8; // untuk pin input bagi infrared2
int isObstacle = HIGH; // infrared1 high

int enableB = 9;
int MotorB1 = 10;
int MotorB2 = 11;
int isObstaclePin2 = 12; // untuk pin input bagi infrared2
int isObstacle2 = HIGH; // infrared2 high

void setup() {

Serial.begin (9600);
//configure pin modes
pinMode (enableA, OUTPUT);
pinMode (MotorA1, OUTPUT);
pinMode (MotorA2, OUTPUT);
pinMode(isObstaclePin,INPUT);
pinMode (enableB, OUTPUT);
pinMode (MotorB1, OUTPUT);
pinMode (MotorB2, OUTPUT);
pinMode(isObstaclePin2,INPUT);

}

void loop() {

isObstacle = digitalRead (isObstaclePin);
isObstacle2 = digitalRead (isObstaclePin2);
if ((isObstacle == HIGH)&&(isObstacle2 == HIGH))
{
Serial.println ("Enabling Motors");

digitalWrite (enableA, HIGH);
digitalWrite (enableB, HIGH);
delay (500);
//do something

Serial.println ("Motion Forward");
digitalWrite (MotorA1, LOW);
digitalWrite (MotorA2, HIGH);
digitalWrite (MotorB1, LOW);
digitalWrite (MotorB2, HIGH);

}

8685

else

{
//reverse
delay(500);
Serial.println ("Enabling Motors");

digitalWrite (enableA, HIGH);
digitalWrite (enableB, HIGH);
digitalWrite (MotorA1,HIGH);
digitalWrite (MotorA2,LOW);
digitalWrite (MotorB1,HIGH);
digitalWrite (MotorB2,LOW);

}

}

2. Intermediate Projects
2.8 Adruino L298D ROBOT CAR

This dual bidirectional motor driver is based on the very popular L298
Dual H-Bridge Motor Driver IC. This module will able to control two
motors of up to 2A each in both directions. It is ideal for robotic
applications and well suited for connection to a microcontroller
requiring just a couple of control lines per motor. This project allow
Adruino uno to control two dc motors.

The components require for this project are :

Adruino UNO
Adruino uno
Breadboard
L298 Module
4x AA batteries and holder

8887

Figure 2.8.1 : Hardware Connection For Adruino
L298D ROBOT CAR Figure 2.8.2 : Output Adruino L298D ROBOT CAR

9089

//L293D
//Motor A
const int motorPin1 = 9; // Pin 14 of L293
const int motorPin2 = 10; // Pin 10 of L293
//Motor B
const int motorPin3 = 6; // Pin 7 of L293
const int motorPin4 = 5; // Pin 2 of L293

//This will run only one time.
void setup(){

//Set pins as outputs
pinMode(motorPin1, OUTPUT);
pinMode(motorPin2, OUTPUT);
pinMode(motorPin3, OUTPUT);
pinMode(motorPin4, OUTPUT);

//Motor Control - Motor A: motorPin1,motorpin2 & Motor B:
motorpin3,motorpin4

//This code will turn Motor A clockwise for 2 sec.
analogWrite(motorPin1, 180);
analogWrite(motorPin2, 0);
analogWrite(motorPin3, 180);
analogWrite(motorPin4, 0);
delay(5000);
//This code will turn Motor A counter-clockwise for 2 sec.
analogWrite(motorPin1, 0);
analogWrite(motorPin2, 180);
analogWrite(motorPin3, 0);
analogWrite(motorPin4, 180);
delay(5000);

//This code will turn Motor B clockwise for 2 sec.
analogWrite(motorPin1, 0);
analogWrite(motorPin2, 180);
analogWrite(motorPin3, 180);
analogWrite(motorPin4, 0);
delay(1000);
//This code will turn Motor B counter-clockwise for 2 sec.
analogWrite(motorPin1, 180);
analogWrite(motorPin2, 0);
analogWrite(motorPin3, 0);
analogWrite(motorPin4, 180);
delay(1000);

//And this code will stop motors
analogWrite(motorPin1, 0);
analogWrite(motorPin2, 0);
analogWrite(motorPin3, 0);
analogWrite(motorPin4, 0);

}

void loop(){

}

9291

3. Advance Projects
3.1 Pin selector

Common Widget Settings

This is one of the main parameters need to be set. It defines which
pin to control or to read from.

Figure 3.1.1 : Pin Selector

Digital Pins - represent physical Digital IO pins on your hardware.
PWM-enabled pins are marked with the ~ symbol
Analog Pins - represent physical Analog IO pins on your hardware
Virtual Pins - have no physical representation. It used for any data
transfer between Blynk App and project hardware. Virtual Pins are
available at http://docs.blynk.cc/#blynk-main-operations-virtual-pins.

http://docs.blynk.cc/#blynk-main-operations-virtual-pins

9493

3. Advance Projects
3.2 Data Mapping

Common Widget Settings

Data mapping is to map incoming values to specific range by using
mapping button :

If sensor sends values from 0 to 1023, but user want to display values
in a range 0 to 100 in the application. With data mapping enabled,
incoming value 1023 will be mapped to 100

Figure 3.2.1 : Data Mapping

Some of the Widgets can send more than one value. By using this
switch, it can control how to send it.

.

Figure 3.3.1 : Split/Merge

3. Advance Projects
3.3 Split/Merge

9695

SPLIT: Each of the parameters is sent directly to the Pin on the
hardware (e.g D7. No coding is needed.
NOTE: In this mode user are able to send multiple commands from
one widget, which can reduce performance of the hardware.
Example: If using a Joystick Widget and it’s set to D3 and D4, it will
send 2 commands over the Internet:

MERGE: When MERGE mode is selected, if user sending just 1
message, consisting of array of values. But user need to parse it on the
hardware. This mode can be used with Virtual Pins only. Example: Add
a zeRGBa Widget and set it to MERGE mode. Choose Virtual Pin V1.

Figure 3.3.2 : Split Output

Figure 3.3.3 : Merge Output

Send On Release

This option is available for most controller widgets and allows you to
decrease data traffic on your hardware. For example, when you move
joystick widget, commands are continuously streamed to the
hardware, during a single joystick move you can send dozens of
commands. There are use-cases where it’s needed, however creating
such a load may cause hardware reset. We recommend enabling Send
On Release feature for most of the cases, unless you really need
instant feedback. This option is enabled by default.

Color gradient

Some display widgets have ability to select gradient. Gradient allows
you to colorize your widgets without any coding. At the moment we
provide 2 types of gradients :
Warm: Green - Orange - Red;
Cold : Green - Blue - Violet;
Gradient changes color of your widget based on min/max properties.
For example, you select warm gradient for your level display widget
with min 0 and max 100 value. When value 10 comes to widget it will
have green color, when value 50 comes you’ll see orange color, when
value 80 comes you’ll see red color.

3. Advance Projects
3.4 Send On Release & Color Gradient

9897

Blynk was designed for the Internet of Things. It can control hardware
remotely, it can display sensor data, it can store data, vizualize it and
do many other cool things.
There are three major components in the platform:
• Blynk App - allows to you create amazing interfaces for your projects
using various widgets we provide.
• Blynk Server - responsible for all the communications between the
smartphone and hardware. You can use our Blynk Cloud or run your
private Blynk server locally. It’s open-source, could easily handle
thousands of devices and can even be launched on a Raspberry Pi.
• Blynk Libraries - for all the popular hardware platforms - enable
communication with the server and process all the incoming and
outcoming commands.
Now imagine: every time you press a Button in the Blynk app, the
message travels to the Blynk Cloud, where it magically finds its way to
your hardware. It works the same in the opposite direction and
everything happens in a blynk of an eye.

3. Advance Projects
3.5 IOT (Blynk)

.

Figure 3.5.1 : IOT (Blynk)

10099

lynk library should be installed manually
Follow the instructions:
i. Download Blynk_Release_vXX.zip (scroll down to the Downloads
section)
ii. Unzip the archive. You will notice that archive contains several
folders and several libraries.
iii. Copy all of these libraries to your_sketchbook_folder of Adruino
IDE. To find the location of your_sketchbook_folder, go to top menu
in Adruino IDE:
Windows: File → Preferences
Mac OS: Adruino → Preferences

The structure of your your_sketchbook_folder should now look like
this, (along with your other sketches if you have them):
your_sketchbook_folder/libraries/Blynk
your_sketchbook_folder/libraries/BlynkESP8266_Lib
...
your_sketchbook_folder/tools/BlynkUpdater
your_sketchbook_folder/tools/BlynkUsbScript
...

3. Advance Projects
3.6 Installing Blynk Library

Note that:
all libraries should go to libraries folder
all tools should go to tools folder

.

Figure 3.6.1 : Installing Blynk Library

102101

Connect circuit as shown on Figure below :

3. Advance Projects
3.7 Started With The Blynk App

/**

Download latest Blynk library here:
https://github.com/blynkkk/blynk-library/releases/latest

Blynk is a platform with iOS and Android apps to control
Adruino, Raspberry Pi and the likes over the Internet.
You can easily build graphic interfaces for all your
projects by simply dragging and dropping widgets.

Downloads, docs, tutorials: http://www.blynk.cc
Sketch generator: http://examples.blynk.cc
Blynk community: http://community.blynk.cc
Social networks: http://www.fb.com/blynkapp

http://twitter.com/blynk_app

Blynk library is licensed under MIT license
This example code is in public domain.

=>
=> USB HOWTO: http://tiny.cc/BlynkUSB
=>

Feel free to apply it to any other example. It's simple!

****/

.

Figure 3.7.1 : Hardware Connection For
Blynk App

104103

/* Comment this out to disable prints and save space */
#define BLYNK_PRINT DebugSerial

// You could use a spare Hardware Serial on boards that have it (like
Mega)
#include <SoftwareSerial.h>
SoftwareSerial DebugSerial(2, 3); // RX, TX

#include <BlynkSimpleStream.h>

// You should get Auth Token in the Blynk App.
// Go to the Project Settings (nut icon).
char auth[] = "YourAuthToken";

void setup()
{

// Debug console
DebugSerial.begin(9600);

// Blynk will work through Serial
// Do not read or write this serial manually in your sketch
Serial.begin(9600);
Blynk.begin(Serial, auth);

}

void loop()
{

Blynk.run();
}

If you don’t have any shield and your hardware doesn’t have any
connectivity, you can still use Blynk – directly over USB :

i. Open Adruino Serial USB example and change Auth Token.

3. Advance Projects
3.8 Adruino over USB (no shield)

.

Figure 3.8.1 : Using Blnyk With No Shield

https://github.com/blynkkk/blynk-library/blob/master/examples/Boards_USB_Serial/Arduino_Serial_USB/Arduino_Serial_USB.ino
http://docs.blynk.cc/#getting-started-getting-started-with-application-4-auth-token

106105

ii. Run the script which is usually located in /scripts folder:
- Windows:My Documents\Adruino\libraries\Blynk\scripts
- Mac User$/Documents/Adruino/libraries/Blynk/scripts

On Windows:
Open cmd.exe

Write your path to blynk-ser.bat folder. For example:

Run blynk-ser.bat file. For example : blynk-ser.bat -c COM4 (where
COM4 is port with your Adruino)
And press “Enter”, press “Enter” and press “Enter”

Or user can use this method :

.

Figure 3.8.3 : Other method For Blynk
.

Figure 3.8.2 : Command Prompt For Blynk

108107

.

Figure 3.8.4 : Appl Blynk

Timer
Timer triggers actions at a specific time. Even if smartphone is
offline. Start time sends 1 (HIGH). Stop time sends 0 (LOW).
Recent Android version also has improved Timer within Eventor
widget. With Eventor Time Event you can assign multiple timers on
same pin, send any string/number, select days and timezone. It is
recommended to use Eventor over Timer widget. However Timer
widget is still suitable for simple timer events.

3. Advance Projects
3.9 Adruino/USB/simple Time

.

Figure 3.9.1 : Simple Timer

110109

/* Comment this out to disable prints and save space */
#define BLYNK_PRINT SwSerial

#include <SoftwareSerial.h>
SoftwareSerial SwSerial(10, 11); // RX, TX

#include <BlynkSimpleStream.h>

// You should get Auth Token in the Blynk App.
// Go to the Project Settings (nut icon).
char auth[] = "YourAuthToken";

BLYNK_WRITE(V1) {
long startTimeInSecs = param[0].asLong();
SwSerial.println(startTimeInSecs);
SwSerial.println();

}

void setup()
{

// Debug console
SwSerial.begin(9600);

// Blynk will work through Serial
// Do not read or write this serial manually in your sketch
Serial.begin(9600);
Blynk.begin(Serial, auth);

}

void loop()
{

Blynk.run();
}

The ESP8266 WiFi Module is a self contained SOC with integrated
TCP/IP protocol stack that can give any microcontroller access to
your WiFi network. The ESP8266 is capable of either hosting an
application or offloading all Wi-Fi networking functions from another
application processor. Each ESP8266 module comes pre-programmed
with an AT command set firmware, meaning, you can simply hook
this up to your Adruino device and get about as much WiFi-ability as
a WiFi Shield offers.

3. Advance Projects
3.10 Adruino ESP8266 Remote Serial Port
WIFI Transceiver Wireless Module

.

Figure 3.10.1 : WIFI Transceiver Wireless
Module

112111

This module has a powerful enough on-board processing and storage
capability that allows it to be integrated with the sensors and other
application specific devices through its GPIOs with minimal development up-
front and minimal loading during runtime. Its high degree of on-chip
integration allows for minimal external circuitry, including the front-end
module which is designed to occupy minimal PCB area.

Specification:
- 32-bit RISC CPU at 80 MHz.
- External Flash 512 KiB to 4 MiB
- 802.11 b/g/n protocol
- WiFi Direct (P2P) and soft-AP
- Integrated Protocol stack.
- 16 GPIO pins (not available on all models).
- 1 10 bit ADC (= analog port with 1024 values)
- SPI, I2C
- Vcc and logical levels differ between 1.6-3.3V, some accept higher voltages
through a voltage regulator or level shifters, so check the specks of your
module.

Step 1:
To ensure that ESP 8266 can function well, we must firmware it into version
0.9.2.4 (Old firmware).

Next, connect the Adruino Uno and upload the “BareMinimum” sketch in
Adruino.ide software, this is to ensure that nothing will disturb the flasher
software. To find “BareMinimum” sketch, go to “File” > “Examples” >
“01.Basics” > “BareMinimum”

**Please take note of what COM-Port that Adruino Uno uses. (See your
COM >“Tools” >“Port”)
Then close the Adruino.ide after uploading the sketch and unplug the USB.

114113

Step 2:

Download flasher-software and the 0.9.2.4 firmware BIN-file here:
http://www.mediafire.com/download/zcw2gy07s2z60y6/ESP8266_fl
asher_and_0.9.2.4.zip

Unzip the file then run the flasher software (esp8266_flasher). Then
Click on the "BIN"-button and find the BIN-file (v0.9.2.4 AT
Firmware-ESPFIX.bin) in the folder.
:

.

Figure 3.10.2 : Zip File For 0.9.2.4 firmware

.

Figure 3.10.1 : Wiring For ESP8266

116115

Next is to check whether it is the correct COM port or change it to the
correct port that used by Adruino.
To start the upload, click on the "Download"-button. If everything is
running well, the flasher software will show the flashing and the blue
LED on the ESP8266 will blink very fast.

Wait until the software finish running and in the end at 99%, it will
show some error but this is ok. The ESP8266 now has firmware
version: 0.9.2.4.

Step 3 :’

Rewiring the ESP8266 as shown in diagram below :

.

Figure 3.10.4 : Hardware Connection For
ESP8266

.

Figure 3.10.3 : Running ESP8266 Software

118117

.

Figure 3.10.5 : Wiring For ESP8266

A simple LED for indication. You need to send 0 in order to turn LED
off. And 255 in order to turn LED on. Or just use Blynk API as
described below :

All values between 0 and 255 will change LED brightness :

3. Advance Projects
3.11 LED Control

.

Figure 3.11.1 : Blynk API

.

Figure 3.11.2 : Change LED Brightness

120119

.

Figure 3.11.3 : LED Setting Interface

/* Comment this out to disable prints and save space */
#define BLYNK_PRINT Serial

#include <SPI.h>
#include <Ethernet.h>
#include <BlynkSimpleEthernet.h>

// You should get Auth Token in the Blynk App.
// Go to the Project Settings (nut icon).
char auth[] = "YourAuthToken";

WidgetLED led1(V1);

BlynkTimer timer;

// V1 LED Widget is blinking
void blinkLedWidget()
{

if (led1.getValue()) {
led1.off();
Serial.println("LED on V1: off");

} else {
led1.on();
Serial.println("LED on V1: on");

}
}

122121

void setup()
{

// Debug console
Serial.begin(9600);

Blynk.begin(auth);

timer.setInterval(1000L, blinkLedWidget);
}

void loop()
{

Blynk.run();
timer.run();

}

Similar to potentiometer. Allows to send values between MIN and
MAX.

3. Advance Projects
3.12 Slider

.

Figure 3.12.1 : Slider Interface

124123

.

Figure 3.12.2 : Slider Output

Control servo movements in 4 directions
Settings:
SPLIT/MERGE modes
Rotate on Tilt
When it’s ON, Joystck will automatically rotate if you use your
smartphone in landscape orientation
Auto-Return
When it’s OFF, Joystick handle will not return back to center position.
It will stay where you left it.
.

3. Advance Projects
3.13 Joystick

.

Figure 3.13.1 : Joystick Interface

126125

.

Figure 3.13.2 : Joystick Output

Works in push or switch modes. Allows to send 0/1 (LOW/HIGH)
values. Button sends 1 (HIGH) on press and sends 0 (LOW) on
release.

3. Advance Projects
3.14 Button

.

Figure 3.14.1 : Button Interface

128127

.

Figure 3.14.2 : Button Output

Timer triggers actions at a specific time. Even if smartphone is
offline. Start time sends 1 (HIGH). Stop time sends 0 (LOW).
Recent Android version also has improved Timer within Eventor
widget. With Eventor Time Event you can assign multiple timers on
same pin, send any string/number, select days and timezone. It is
recommended to use Eventor over Timer widget. However Timer
widget is still suitable for simple timer events.

3. Advance Projects
3.15 Timer

.

Figure 3.15.1 : Timer Interface

130129

.

Figure 3.15.2 : Timer Output

zeRGBa is usual RGB controller (color picker).

Settings:
SPLIT: Each of the parameters is sent directly to the Pin on your hardware
(e.g D7). You don’t need to write any code.

NOTE: In this mode you send multiple commands from one widget, which
can reduce performance of your hardware.
Example: If you have a zeRGBa Widget and it’s set to D1, D2, D3 it will send
3 commands over the Internet:

3. Advance Projects
3.16 zeRGBa

.

Figure 3.16.1 : Split

132131

MERGE: When MERGE mode is selected, you are sending just 1 message,
consisting of array of values. But you’ll need to parse it on the hardware.

This mode can be used with Virtual Pins only.
Example: Add a zeRGBa Widget and set it to MERGE mode. Choose Virtual
Pin V1.

.

Figure 3.16.2 : Merge

.

Figure 3.16.3 : zeGBRa

134133

Step control is like 2 buttons assigned to 1 pin. One button
increments your value by desired step and another one decrements
it. It is very useful for use cases where you need to change your
values very precisely and you can’t achieve this precision with slider
widget.

Send Step option allows you to send step to hardware instead of
actual value of step widget. Loop value option allows you to reset
step widget to start value when maximum value is reached.

3. Advance Projects
3.17 Step H

.

Figure 3.17.1 : Step H Interface

.

Figure 3.17.2 : Step H Output

136135

Step control is like 2 buttons assigned to 1 pin. One button
increments your value by desired step and another one decrements
it. It is very useful for use cases where you need to change your
values very precisely and you can’t achieve this precision with slider
widget.

Send Step option allows you to send step to hardware instead of
actual value of step widget. Loop valueoption allows you to reset
step widget to start value when maximum value is reached.

3. Advance Projects
3.18 Step V

.

Figure 3.18.1 : Step V Interface

.

Figure 3.18.2 : Step V Output

138137

Displays incoming data from your sensors or Virtual Pins. It is a
better version of ‘Value Display’ as it has a formatting string, so you
could format incoming value to any string you want.

3. Advance Projects
3.19 Labelled Value

.

Figure 3.19.1 : Labelled Value

Sketch: BlynkBlink

Formatting options
Let’s assume, your sensor sends number 12.6789 to Blynk application. Next
formatting options are supported:
/pin/ - displays the value without formatting (12.6789)
/pin./ - displays the value without decimal part (13)
/pin.#/ - displays the value with 1 decimal digit (12.7)
/pin.##/ - displays the value with two decimal places (12.68)

140139

http://www.instructables.com/id/Simple-Led-Control-With-Blynk-and-
NodeMCU-Esp8266-/

3. Advance Projects
3.20 NodeMCU Esp8266 12E

.

Figure 3.20.1 : NodeMCU Esp8266 12E

.

Figure 3.20.2 : NodeMCU Board

http://www.instructables.com/id/Simple-Led-Control-With-Blynk-and-NodeMCU-Esp8266-/

142141

Blynk is a Platform with iOS and Android apps to control Adruino,
Raspberry Pi and the likes over the Internet.
Blynk was designed for the Internet of Things. It can control hardware
remotely, it can display sensor data, it can store data, vizualize it and
do many other cool things.

3. Advance Projects
3.21 Getting to Know

.

Figure 3.21.1 : Blnyk Platfrom

It's a digital dashboard where you can build a graphic interface for
your project by simply dragging and dropping widgets. It's really
simple to set everything up and you'll start tinkering in less than 5
mins. Blynk is not tied to some specific board or shield. Instead, it's
supporting hardware of your choice. Whether your Adruino or
Raspberry Pi is linked to the Internet over Wi-Fi, Ethernet or this new
ESP8266 chip, Blynk will get you online and ready for the Internet Of
Your Things.

How does it work?
There are three major components in the platform:

Blynk App - allows to you create amazing interfaces for your projects
using various widgets we provide.

Blynk Server - responsible for all the communications between the
smartphone and hardware. You can use our Blynk Cloud or run your
private Blynk server locally. It’s open-source, could easily handle
thousands of devices and can even be launched on a Raspberry Pi.

Blynk Libraries - for all the popular hardware platforms - enable
communication with the server and process all the incoming and
outcoming commands.

Its features:
*Supports majority of development boards like Adruino ,RPI,
esp8266
* Easy to use
* Awesome widgets like LCD, push buttons, labelled value, graphs
* Not restricted to local Wifi network
*Direct pin manipulation with no code writing
*Easy to integrate and add new functionality using virtual pins
I guess this should be more than enough to build the project:)

144143

Materials Required
Now that we have some insights about the hardware and the app, we
require the following components

1. Node MCU Esp8266 12E development board
for my friends in India :follow this link if you want to buy
http://www.amazon.in/ESP8266-NodeMcu-WiFi-Development-
Board/dp/B00UY8C3N0
and for my buddies in around the world:
https://www.amazon.com/Diymall%C2%AE-NodeMCU-Devkit-
CP2102-Apples/dp/B00UY8C3N0?ie=UTF8&*Version*=1&*entries*=0

2. Smart Phone with Blynk App installed
Note : You better charge your mobile before use:)

3. Led with an 330 ohm resistor

4. Breadboard

5. Adruino IDE v1.6.6

And that's pretty much the list to be satisfied!!

3. Advance Projects
3.22 Simple Led Control With Blynk and
NodeMCU Esp8266 12E

.

Figure 3.22.1 : Setting Up Blynk With Adruino
IDE

https://www.amazon.com/Diymall%C2%AE-NodeMCU-Devkit-CP2102-Apples/dp/B00UY8C3N0?ie=UTF8&*Version*=1&*entries*=0

146145

This blynk app has set of library files which have to be included in the
Adruino IDE environment before the project is executed

1. Follow the link to install libraries
http://www.blynk.cc/getting-started/

2. Once the Zip file is downloaded ,extract it and individually copy all
the folder to your libraries folder of your Adruino

3. Once done just open Adruino IDE and go to Sketch-> Include
libraries and you would see blynk in the menu

4. If you see that then libraries have been included successfully

*Now it is time to include the board configuration in the Adruino IDE
What is board configuration?
Ok , a simple answer is that it contains all the essential parameters
which required to get the board booted and configured.
for example in if you go to Tools->Board Menu you would see a list of
boards . All this boards listed have different configuration settings.
Therefore we should also include NodeMCU's board configurations
which typically contain the board architecture , clock speed, baud rate
etc.

Lets start. In the Adruino IDE go to File->Preferences
Now Copy the below link and paste it in the Additional Boards
Manager Url text box
http://Adruino.esp8266.com/stable/package_esp8266c...
Restart the Adruino IDE after that.
Now after restarting the Adruino IDE , go to Tools->Boards and select
Node MCU board , mine was version 0.9

.

Figure 3.22.2 : File Menu

http://www.blynk.cc/getting-started/
http://arduino.esp8266.com/stable/package_esp8266com_index.json

148147

.

Figure 3.22.4 : Tools Menu

.

Figure 3.22.3 : Setting Menu

150149

.

Figure 3.22.5 : Board Manager

3. Advance Projects
3.23 Simple Led Control With Blynk and
NodeMCU Esp8266 12E

.

Figure 3.22.6 : Open new file for ESP8266

152151

.

Figure 3.22.7 : BlynkSimpleEsp8266.h File

Program:

/* Comment this out to disable prints and save space */
#define BLYNK_PRINT Serial
#include <ESP8266WiFi.h>
#include <BlynkSimpleEsp8266.h>
// You should get Auth Token in the Blynk App.
// Go to the Project Settings (nut icon).
char auth[] = "7c8e49e91e6b4a619687670372df3c86";
// Your WiFi credentials.
// Set password to "" for open networks.
char ssid[] = "synacorp@unifi";
char pass[] = "zaq1xsw2";
void setup()
{

// Debug console
Serial.begin(9600);

Blynk.begin("7c8e49e91e6b4a619687670372df3c86","synacorp@uni
fi","zaq1xsw2");
}

void loop()
{

Blynk.run();
}

154153

.

Figure 3.22.9 : Circuit Connection

.

Figure 3.22.8 : Blnyk Interface

156155

.

Figure 3.22.10 : IoT Motion Detector

Bill of Material

- NodeMCU ESP12-E
- Motion Sensor HC-SR501
- Resistor (1K, 2.2K and 330ohm)
- LED
- Breadboard
- Cables

.

Figure 3.22.11 : Motion Detector Manual

158157

.

Figure 3.22.12 : Motion Detector Board

.

Figure 3.22.13 : The HW

159158

The HW is very simple. The sensor has 3 pins (+5V, GND and Output).
It is important to point that the output of the HC-SR501 generates a logic
signal of + 3.3V (HIGH) or 0V (LOW), which is COMPATIBLE with the input
levels of the NodeMCU, which also works with the 3.3V level. I kept the
circuit with a level converter to ensure if any other sensor with 5V output is
used. If you are sure that you sensor generates 3.3V and not 5V as output
you can eliminate the level converter, connecting NodeMCU Pin D1 (GPIO
5) directly to HC-SR501 Output.
We have also included a LED at pin D7 (GPIO13), for a local visualization

REFERENCES

1. Monk, S. (2016). Programming Arduino: Getting

Started with Sketches ((2nd Edition). Mc Graw Hill

education.

2. Boxall, J. (2013). Arduino Workshop: A Hands-On

Introduction with 65 Projects. San Francisco.

3. Margolis, M. (2012) Arduino Cookbook, 2nd

Edition 2nd Edition. O’Reilly.

4. Richard, B. (2015). Arduino Programming in 24

Hours, Sams Teach Yourself 1st Edition. Sams.

5. Thorpe, E. (2020). Arduino: Advanced Methods and

Strategies of Using Arduino. Kindle Edition.

6. Nussey, J. (2018). Arduino For Dummies (For

Dummies (Computer/Tech)) 2nd Edition. Kindle

Edition.

7. David W.J., Adams, J. & Molle, H. (2011). Arduino

Robotics (Technology in Action) 1st ed. Edition.

Apress.

8. Parker, D. (2020).Arduino Programming: The

Ultimate Guide For Making The Best Of Your Arduino

Programming Projects. Kindle Edition

