Page 109 - ebook fluid mechanics_finalize
P. 109

FLUID MECHANICS





                              z1 = z2 because of the two parts are at the same level





                              We know that,


                                                           Q =  A  v






                              For continuity of flow, Q1 = Q2       or       A1v1 = A2v2




                                          A v
                              So,    v2  =   1  1          ——————(3)
                                           A 2





                                                     v  2  − v  2  p −  p
                              Putting (3) into (2),         2  1  =  1  2       ——————(2)
                                                       2g         


                                              A v
                                            v2  =   1  1      ——————(3)
                                               A 2


                              Then,


                                             v   A 1 2  − 1 =  p −  p 2
                                                        
                                               2
                                                             1
                                              1
                                             2g    A 2 2    
                                                        



                              So,



                                               p  − p  
                                            2g   1   2  
                                     v  =            
                                      1          2
                                              A      
                                               1  −1 
                                                2    
                                               A 2   






                                                                                                            98
   104   105   106   107   108   109   110   111   112   113   114